Réécrivez 108 comme 62⋅3 6 2 ⋅ 3 . Factorisez 36 36 à partir de 108 108 . Réécrivez 36 36 comme 62 6 2 . Extrayez les termes de sous le radical.
√180 = 2√45, mais l'on peut encore simplifier. √180 = 2√(3 x 15)
Pour simplifier une racine carrée, on recherche des facteurs carrés parmi les diviseurs du nombre sous la racine. Par exemple, la racine carrée de 48 peut être simplifiée en séparant les facteurs carrés : √(16 × 3) = √16 × √3 = 4√3.
Réécrivez 147 comme 72⋅3 7 2 ⋅ 3 . Factorisez 49 49 à partir de 147 147 . Réécrivez 49 49 comme 72 7 2 . Extrayez les termes de sous le radical.
Simplifier une racine carrée, c'est l'écrire sous la forme « a x √b » avec b le plus petit possible.
Algèbre Exemples
Factorisez 16 16 à partir de 80 80 . Réécrivez 16 16 comme 42 4 2 . Extrayez les termes de sous le radical. Le résultat peut être affiché en différentes formes.
Réécrivez 18 comme 32⋅2 3 2 ⋅ 2 . Factorisez 9 9 à partir de 18 18 . Réécrivez 9 9 comme 32 3 2 . Extrayez les termes de sous le radical.
Réécrivez 150 comme 52⋅6 5 2 ⋅ 6 . Factorisez 25 25 à partir de 150 150 . Réécrivez 25 25 comme 52 5 2 . Extrayez les termes de sous le radical.
Algèbre Exemples
Réécrivez 169 comme 132 . Extrayez les termes de sous le radical, en supposant qu'il s'agit de nombres réels positifs. Multipliez −1 par 13 .
Réécrivez 45 comme 32⋅5 3 2 ⋅ 5 . Factorisez 9 9 à partir de 45 45 . Réécrivez 9 9 comme 32 3 2 . Extrayez les termes de sous le radical.
Réécrivez 288 comme 122⋅2 12 2 ⋅ 2 . Factorisez 144 144 à partir de 288 288 . Réécrivez 144 144 comme 122 12 2 . Extrayez les termes de sous le radical.
Algèbre Exemples
Factorisez 25 25 à partir de 50 50 . Réécrivez 25 25 comme 52 5 2 . Extrayez les termes de sous le radical. Multipliez 5 par −1 .
√75 = √25 × 3 = √25 × √3=5√3. Remarque. Pour simplifier la racine carrée d'un nombre il suffit donc d'écrire ce nombre sous la forme d'un produit impliquant des carrés parfaits (4 ou 25 ci-dessus).
Puisqu'on sait que 20 = 4×5 et que √(4×5) = √4×√5, on préférera "simplifier" en écrivant 2√5 à la place de √20.
Réécrivez 32 comme 42⋅2 4 2 ⋅ 2 . Factorisez 16 16 à partir de 32 32 . Réécrivez 16 16 comme 42 4 2 . Extrayez les termes de sous le radical.
Il est exact que √200 = 5√8 !
racine carrée de 400 =
= 20.
Réécrivez 8 comme 22⋅2 2 2 ⋅ 2 . Factorisez 4 4 à partir de 8 8 . Réécrivez 4 4 comme 22 2 2 . Extrayez les termes de sous le radical.
Réécrivez 500 comme 102⋅5 10 2 ⋅ 5 . Factorisez 100 100 à partir de 500 500 . Réécrivez 100 100 comme 102 10 2 . Extrayez les termes de sous le radical.
La racine carrée de 25 est 5, car 5 x 5 = 25. La racine carrée de 36 est 6, car 6 x 6 = 36.
(pas besoin d'une calculatrice) 10 x 10 = 100, donc 10 est bien la racine carrée de 100 .
Algèbre Exemples
Factorisez 16 16 à partir de 48 48 . Réécrivez 16 16 comme 42 4 2 . Extrayez les termes de sous le radical. Le résultat peut être affiché en différentes formes.
La racine carrée de 15 vaut donc environ 4 – 0,125 ou 3,875.
Si on "creuse" un peu plus, pour en savoir davantage sur cette racine, on peut vérifier que la racine carrée de 17 est comprise entre 4,1 et 4,2 puisque 4,12=16,4 et que 4,22=17,64.