Définition: Deux vecteurs sont égaux lorsqu'ils ont la même direction, le même sens et la même longueur. par la translation de vecteur de AB . Propriété : Si AB = CD alors ABDC est un parallélogramme (éventuellement aplati).
La relation de chasle est un cas particulier d'addition de vecteurs, elle ne peut s'appliquer que lorsque l'extrémité du premier vecteur correspond au même point que l'origine du deuxième vecteur, dans ce cas le vecteur somme possède la même origine que le premier vecteur et a la même extrémité que le second vecteur.
Calcul vectoriel - Points clés
Pour calculer la norme d'un vecteur, il faut utiliser la formule ‖ v → ‖ = v x 2 + v y 2 . Pour calculer les coordonnées d'un vecteur, nous utilisons la formule A B → = ( x B − x A y B − y A ) .
Pour calculer les coordonnées de la somme de deux vecteurs, on additionne les coordonnées de chacun des vecteurs. Pour calculer les coordonnées de la différence de deux vecteurs, on soustrait les coordonnées de chacun des vecteurs.
Réponse. Nous commençons par rappeler qu'en coordonnées cartésiennes, l'addition et la soustraction de vecteurs peuvent être effectuées en additionnant ou en soustrayant les composantes correspondantes des vecteurs. Si ⃑ 𝐴 = ( 𝑥 , 𝑦 ) et ⃑ 𝐵 = ( 𝑥 , 𝑦 ) , alors ⃑ 𝐴 + ⃑ 𝐵 = ( 𝑥 + 𝑥 , 𝑦 + 𝑦 ) .
La somme de deux vecteurs opposés est nulle.
Propriété Le vecteur (-b\: ; a) est un vecteur directeur de la droite d'équation ax + by + c = 0. Logique Réciproquement, si le vecteur (-b \:; a) est un vecteur directeur de d, alors une équation cartésienne de d est ax + by + c = 0 (avec c à déterminer).
Définition 1.1.2 La somme de deux vecteurs v et w, notée v+w, est un nouveau vecteur dont l'origine est celle de v et dont l'extrémité est celle de w lorsque ce dernier a son origine `a l'extrémité de v.
(a) L'addition vectorielle. On définit l'addition ou somme de deux vecteurs →u et →v, comme le vecteur dont les composantes sont obtenues par addition des composantes correspondantes des deux vecteurs →u et →v. On note →u+v le vecteur somme. →u+→v=(ux+vx,uy+vy).
Soient u et v , deux vecteurs de coordonnées respectives (xy) et (x′y′). Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
Deux vecteurs égaux ont les mêmes coordonnées, donc x = 2 et y – 4 = 3, c'est-à-dire y = 7. On se place dans un plan muni d'un repère orthonormé (O ; , ). On peut calculer la norme d'un vecteur à partir de ses coordonnées ou à partir des coordonnées de ses extrémités.
possède trois éléments caractéristiques : sa direction (droite (AB)) ; son sens (il y a deux sens possibles de parcours de la droite (AB) : de A vers B ou de B vers A) ; sa norme (ou sa longueur, la longueur du segment [AB]).
Propriété : Deux vecteurs colinéaires non nuls ont la même direction. Conséquences géométriques : Dire que les vecteurs et sont colinéaires signifie que les points A, B, C sont alignés. Dire que les vecteurs non nuls et sont colinéaires signifie que les droites (AB) et (CD) sont parallèles.
Définitions : vecteur, vectrice - Dictionnaire de français Larousse.
Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
Les caractéristiques d'un vecteur sont sa direction, son sens et sa norme. Un vecteur qui a le même point pour origine et pour extrémité est appelé vecteur nul et est noté . Ce vecteur n'a pas de direction, pas de sens et sa norme est égale à 0. Deux vecteurs égaux ont la même direction, le même sens et la même norme.
L'ensemble des points M(x,y) tels que ax + by + c = 0 avec (a,b) ≠ (0,0) est une droite vecteur directeur . Cette propriété permet de : caractériser en tant que droite l'ensemble des points M(x,y) vérifiant une égalité du type ax + by + c = 0 avec (a,b) ≠ (0,0) ; déterminer un vecteur directeur de cette droite.
On rappelle que deux droites sont parallèles si elles ont le même vecteur directeur. Comme les deux droites sont parallèles, elles ont le même vecteur directeur. On peut donc utiliser le vecteur directeur de la droite donnée pour ⃑ 𝑑 dans l'équation vectorielle de la droite recherchée.
Soit A un point du plan, ⃗ u un vecteur non nul et D la droite passant par A de vecteur directeur ⃗ \vec u. u . Un point M appartient à la droite D si et seulement si les vecteurs ⃗ u et A M → {\overrightarrow{AM}} AM sont colinéaires.
On appelle vecteur normal de (P) tout vecteur (non nul) orthogonal à tous les vecteurs directeurs du plan. Généralement, on peut obtenir un vecteur normal de deux façons différentes : en faisant le produit vectoriel de deux vecteurs directeurs non colinéaires du plan; à partir d'une équation cartésienne du plan.
Vecteur opposé et différence de deux vecteurs
AB+⃗ BA=⃗ AA=⃗0 . Définition : A et B désignent deux points du plan. B A est appelé vecteur opposé du vecteur ⃗ AB et noté −⃗ AB . AB et−⃗ AB ont même direction, même norme mais sont de sens contraires.
Vecteur nul :
Lorsque deux points A et B sont confondus, on dit que le vecteur A B → \overrightarrow{AB} AB est un vecteur nul et on note 0 ce vecteur. Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.