Propriété : Dans un triangle rectangle, la somme des 2 angles aigus est égale à 90°. Une façon de reconnaître un triangle rectangle : Si dans un triangle la somme de deux angles est égale à 90°, alors ce triangle est un triangle rectangle.
Rectangle : quadrilatère dont les 4 angles sont droits (angles à 90°) ; Triangle : figure géométrique plane dotée de 3 côtés (et par conséquent de 3 angles) ; Triangle rectangle : triangle doté d'un angle droit (angle à 90°).
Dans un triangle rectangle, on appelle cosinus d'un angle aigu le rapport du côté adjacent à l'angle et de l'hypoténuse. Exemple et notation : cos a = AC AB . Dans un triangle rectangle, on appelle sinus d'un angle aigu le rapport du côté opposé à l'angle et de l'hypoténuse. Exemple et notation : sin a = BC AB .
En géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l'angle droit, sont appelés cathètes.
Propriété 2: Dans un triangle rectangle, la somme des mesures des angles reposant sur l'hypoténuse est égale à 90°. Propriété 3: Dans un triangle équilatéral, les angles sont égaux et mesurent 60°.
En mathématiques, un angle aigu est un angle saillant strictement inférieur à l'angle droit, autrement dit un angle dont la mesure en degrés est comprise entre 0 ° et 90 ° exclu (soit entre 0 et π/2 radians exclu).
Si un triangle est rectangle, alors le milieu de l'hypoténuse est équidistant des trois sommets. En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A. Découvre comment appliquer le théorème de Pythagore.
Ce triangle est-il rectangle ? Or, si le carré de la longueur du plus grand côté d'un triangle n'est pas égal à la somme des carrés des longueurs des deux autres côtés alors ce triangle n'est pas rectangle.
L'hypoténuse d'un triangle rectangle est le côté qui est en face de l'angle droit. C'est le plus long des trois côtés du triangle.
Le sinus d'un angle aigu dans un triangle rectangle est le quotient de son côté opposé par l'hypoténuse.
Dans un triangle ABC, on a : + + = 180°. Quand on connait deux angles d'un triangle, on peut calculer le troisième. Dans le triangle ABC ci-dessous on donne = 75° et = 39°.
Dans un triangle rectangle, le cosinus d'un angle est égal au rapport de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Si vous arrivez à déterminer cet angle dans le triangle, alors sachez que cet angle est droit. Cette règle se base sur le théorème de Pythagore : A2 + B2 = C2 pour un angle droit.
(Géométrie) Triangle dont l'un des angles est un angle droit.
Si, dans un triangle, la longueur de la médiane issue du sommet opposé au plus grand côté vaut la moitié de la longueur de ce côté, alors le triangle est rectangle.
Dans un triangle rectangle, l'hypoténuse est le côté opposé à l'angle droit. L'hypoténuse est le plus grand côté du triangle rectangle.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Dans un triangle:
Si le carré de la mesure de son plus grand côté est égal à la somme des carrés des mesures des deux autres côtés, alors ce triangle est rectangle et le plus grand côté est son hypoténuse.
v Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Soit le triangle ABC rectangle en A ci-contre. D'après le théorème de Pythagore, on a : BC2 = AB2 + AC2.
Théorème de Thalès (appliqué au triangle)
ABC est un triangle. M se trouve sur le segment [AB] et N sur le segment [AC]. D'après le théorème de Thalès, si les droites (BC) et (MN) sont parallèles, alors on a l'égalité : \frac{AM}{AB} = \frac{AN}{AC} =\frac{MN}{BC}.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
Grâce à la propriété de Pythagore
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.