On trace la droite passant par B et par le milieu de \left[ AC \right] ainsi que la droite passant par C et par le milieu du segment \left[ AB \right]. On obtient les trois médianes.
Dans un jeu de données de petite taille, il suffit de compter le nombre de valeurs (n) et de les ordonner en ordre croissant. Si le nombre de valeurs est un nombre impair, il faut lui additionner 1, puis le diviser par 2 pour obtenir le rang qui correspondra à la médiane.
Dans un triangle, la médiane issue d'un sommet est la droite qui passe par ce sommet et par le milieu du côté opposé.
Déposer un côté de l'angle droit de l'équerre sur la base du triangle. Aligner l'autre côté de l'angle droit de l'équerre avec le sommet du triangle. Tracer le segment qui part du sommet et qui rejoint perpendiculairement la base du triangle. Ce segment est la hauteur du triangle.
Les trois médianes d'un triangle sont concourantes en un point appelé le centre de gravité du triangle. Dans un triangle, une hauteur est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle.
Le point de concours des médiatrices d'un triangle est le centre du cercle circonscrit au triangle. Remarque 3 points non alignés appartiennent donc toujours `a un cercle : le cercle circonscrit au triangle qu'ils forment.
Théorème — Dans un triangle rectangle, la longueur de la médiane issue du sommet de l'angle droit vaut la moitié de la longueur de l'hypoténuse.
la médiatrice : c'est la droite qui coupe un segment en son milieu perpendiculaire. la médiane : c'est la droite qui rejoint un sommet du triangle avec le milieu du segment opposé.
On place le milieu I de [AB]. La position du point I s'obtient en faisant le calcul suivant : IA = IB = AB ÷ 2 = 6 ÷ 2 = 3 cm. On place l'équerre en I puis on trace la perpendiculaire à [AB] passant par I. (d) est la médiatrice de [AB].
On trace la droite perpendiculaire à la droite [AC] passant par B. On note M le pied de la hauteur. Remarque : les trois hauteurs se coupent en un point que l'on nomme orthocentre du triangle.
Si la série comporte un nombre impair de données, la médiane est le chiffre du milieu. Si la série comporte un nombre pair de données, la médiane est le chiffre situé entre les deux données du milieu.
Ce point d'intersection est le centre du cercle inscrit, car ce point se trouve à égale distance des 3 cotés, c'est donc le centre d'un cercle tangent aux trois cotés du triangle. Ce cercle intérieur s'appelle donc le cercle inscrit.
La hauteur d'un triangle est une droite qui passe par un sommet du triangle et qui est perpendiculaire au côté opposé à ce sommet. Pour construire une hauteur, il te faut une équerre. Les hauteurs sont tracées en vert. Cas particulier : des fois, il faut prolonger le côté opposé pour pouvoir tracer la hauteur (cf.
Droite perpendiculaire à un segment et passant par son milieu. (C'est l'ensemble des points d'un plan contenant ce segment, équidistants de ses extrémités.)
Les médianes d'un triangle sont concourantes en un point appelé le centre de gravité du triangle. De plus, ce point est situé au deux tiers de chaque médiane à partir du sommet. La droite (BM) ( B M ) est parallèle à la droite (GC)=(C′G) ( G C ) = ( C ′ G ) .
Si un triangle est rectangle alors la longueur de la médiane issue de l'angle droit est égale à la moitié de la longueur de l'hypoténuse.
Propriété 2 : Si un point est à égale distance des deux extrémités d'un segment, alors il est sur la médiatrice de ce segment. Première méthode : avec une règle graduée et une équerre On commence par placer le milieu I du segment avec la règle. Puis on trace la perpendiculaire à [AB] passant par I avec l'équerre.
La première utilise la définition de la médiatrice d'un segment : c'est une droite qui passe par le milieu du segment et qui est perpendiculaire au segment. Pour la construire, il faut : placer le milieu du segment avec la règle graduée ; tracer avec l'équerre la perpendiculaire au segment passant par le milieu.
Placer la pointe sèche du compas sur le sommet de l'angle et tracer un arc qui coupe les deux côtés de l'angle. Placer la pointe sèche du compas sur une intersection de l'arc de cercle et d'un côté de l'angle. Tracer un nouvel arc dans l'ouverture de l'angle. Refaire l'opération à partir de l'autre intersection.
La médiane est un nombre qui permet de partager la population en deux groupes de même effectif. Elle est notée . Interprétation de la médiane : 50% des valeurs de la série sont inférieures ou égales à Me. 50% des valeurs de la série sont supérieures ou égales à Me.
Méthode avec un compas et une règle
Placer la pointe sèche du compas sur une extrémité du segment et tracer un cercle. Répéter l'étape 2 à partir de l'autre extrémité du segment. À l'aide d'une règle, tracer la droite qui relie les deux intersections des cercles. Cette droite est la médiatrice du segment.
Le centre de gravité est le point d'intersection des trois médianes d'un triangle. Le centre du cercle circonscrit au triangle est le point d'intersection des trois médiatrices du triangle. S'il s'agit d'un triangle rectangle, le centre du cercle circonscrit au triangle est le milieu de l'hypoténuse du triangle.
Si un triangle est rectangle, alors la longueur de la médiane issue de l'angle droit est égale à la moitié de l'hypoténuse. Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés.
Le point d'intersection des trois médiatrices d'un triangle se trouve à égale distance des trois sommets du triangle. Ce point est donc le centre du cercle circonscrit au triangle. Par trois points non alignés, on peut donc faire passer un et un seul cercle.