Les diviseurs d'un nombre
L'ensemble des diviseurs d'un nombre correspond à tous les nombres entiers qui divisent ce nombre sans qu'il n'y ait de reste. 4 est un diviseur de 24 , car 24÷4=6 24 ÷ 4 = 6 . 5 n'est pas un diviseur de 24 , car 24÷5=4,8 24 ÷ 5 = 4 , 8 (Le quotient n'est pas un nombre entier).
1. Les diviseurs de 90 sont : 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. Les diviseurs de 126 sont : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
Ainsi, les entiers qui divisent à la fois les nombres 126 et 90 sont donc : - 1 ; - 2 ; - 3 ; - 2 × 3 = 6 ; - 32 = 9 ; - 2 × 32 = 18. c. D'après la question précédente, le grand entier qui divise à la fois les nombre 126 et 90 est 18.
Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 196) est la suivante : 1, 2, 4, 7, 14, 28, 49, 98, 196. Pour que 196 soit un nombre premier, il aurait fallu que 196 ne soit divisible que par lui-même et par 1.
Il existe une méthode pour décomposer : exemple : décomposons 84 : Je divise par les nombres premiers : 2-3-5-7-11-13…..
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 90) est la suivante : 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. Pour que 90 soit un nombre premier, il aurait fallu que 90 ne soit divisible que par lui-même et par 1.
Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 .
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
Concernant 182, la réponse est : Non, 182 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 182) est la suivante : 1, 2, 7, 13, 14, 26, 91, 182. Pour que 182 soit un nombre premier, il aurait fallu que 182 ne soit divisible que par lui-même et par 1.
120 est divisible par 2 donc 120= 2\times 60. 60 est divisible par 2 donc 60= 2\times 30. 30 est divisible par 2 donc 30 = 2\times 15. 15 est divisible par 3 donc 15= 3\times 5.
Les multiples et diviseurs
Le multiple d'un nombre est le produit de ce nombre avec un nombre entier. Par exemple : 6×8=48 donc 48 est un multiple de 6 et de 8. Si 48 est un multiple de 6 et de 8 alors 6 et 8 sont des diviseurs de 48.
Par exemple, les diviseurs de 36 sont 1, 2, 3, 4, 6, 9, 12, 18 et 36. Pour être plus précis, un diviseur est un nombre qui est divisible par un autre nombre sans laisser de reste.
Les diviseurs de 27 sont : 1 ; 3 ; 9 ; 27.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 128) est la suivante : 1, 2, 4, 8, 16, 32, 64, 128. Pour que 128 soit un nombre premier, il aurait fallu que 128 ne soit divisible que par lui-même et par 1.
Les diviseurs de 35 sont 1, 5, 7, 35 parce que tu peux diviser 35 par chacun de ses nombres.
Le nombre 360 a pour décomposition en produit de facteurs premiers 2×2×2×3×3×5 ainsi, il possède 24 diviseurs et, comme il est le plus petit entier à en avoir autant c'est un nombre hautement composé.
Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés.
Par exemple, les diviseurs positifs de 30 sont, dans l'ordre : 1, 2, 3, 5, 6, 10, 15 et 30. Ceux de 18 sont 1, 2, 3, 6, 9 et 18. Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 100) est la suivante : 1, 2, 4, 5, 10, 20, 25, 50, 100. Pour que 100 soit un nombre premier, il aurait fallu que 100 ne soit divisible que par lui-même et par 1.
Les diviseurs de 78 sont : 1 ; 2 ; 3 ; 6 ; 13 ; 26; 39 ; 78. Ceux de 208 sont : 1 ; 2 ; 4 ; 8 ; 13 ; 26; 52 ; 104 ; 208. 1 ; 2 ; 13 et 26 sont les diviseurs communs de 78 et 208.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 64) est la suivante : 1, 2, 4, 8, 16, 32, 64. Pour que 64 soit un nombre premier, il aurait fallu que 64 ne soit divisible que par lui-même et par 1.