Pour déterminer l'abscisse du point d'intersection avec l'axe des abscisses, il faut trouver la valeur de x pour laquelle y = 0 y=0 y=0 . Pour déterminer l'ordonnée du point d'intersection avec l'axe des ordonnées, il faut trouver la valeur de y pour laquelle x = 0 x=0 x=0 .
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
Les nombres de la première ligne représentent les abscisses des points, ceux de la seconde représentent les ordonnées.
L'abscisse et l'ordonnée à l'origine
L'abscisse à l'origine est la valeur de l'abscisse (x) lorsque l'ordonnée (y) vaut zéro. Autrement dit, c'est l'endroit sur le graphique où la droite croise l'axe des abscisses. L'ordonnée à l'origine est la valeur de l'ordonnée (y) lorsque l'abscisse (x) vaut zéro.
Définition : Le nombre associé à un point sur une demi-droite graduée est l'abscisse de ce point. L'origine O de la demi-droite a pour abscisse 0. A est le point d'abscisse 1. Le point B a pour abscisse 2,5.
Chaque point peut être associé à un nombre que l'on appelle l'abscisse du point. A(1) signifie que le point A a pour abscisse 1. B(4) signifie que le point B a pour abscisse 4.
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées.
Un repère orthogonal du plan est composé de deux droites graduées perpendiculaires et de même origine. L'une horizontale est appelée axe des abscisses et l'autre verticale est appelée axe des ordonnées.
L'ordonnée à l'origine ou la valeur initiale (b)
Dans un graphique, l'ordonnée à l'origine correspond au point d'intersection entre la droite et l'axe des ordonnées (l'axe y ).
Degrés décimaux (DD) : 41.40338, 2.17403. Degrés, minutes et secondes (DMS) : 41°24'12.2"N 2°10'26.5"E. Degrés et minutes décimales (DMM) : 41 24.2028, 2 10.4418.
Graphiquement, elle exprime la variation verticale de la droite pour un déplacement horizontal d'une unité positive. L'ordonnée à l'origine, qui est représentée par la lettre b, est la valeur de y lorsque x est zéro. Il s'agit donc de la position de la droite lorsque celle-ci croise l'axe des y.
La représentation graphique d'une fonction f est l'ensemble des points de coordonnées (x;f(x)). Autrement dit, l'antécédent x se lit sur l'axe des abscisses et l'image f(x) se lit sur l'axe des ordonnées.
L'axe horizontal (abscisses) axe, également appelé axe des x, d'un graphique affiche des étiquettes de texte au lieu d'intervalles numériques, et offre moins d'options d'échelle que celles disponibles pour l'axe vertical (ordonnées), également appelé axe des y.
Pour lire les coordonnées d'un point M dans un repère, on commence par tracer la parallèle à chacun des axes passant par M. On lit la valeur de l'abscisse du point M à l'intersection entre l'axe des abscisses et la parallèle à l'axe des ordonnées.
Pour déterminer les solutions d'une équation de la forme f(x) = k, on lit les abscisses des points d'intersection de la courbe avec la droite horizontale d'équation y = k. Dans le cas d'une inéquation f(x) < k, on lit les abscisses des points de la courbe situés au-dessous de la droite d'équation y = k.
Gauche-droite, haut-bas, et avant-arrière. Ces trois dimensions, ou axes, s'appellent généralement X, Y et Z. Ces axes nous servent à naviguer dans notre monde virtuel en 3D. Ils permettent de mesurer la position des objets, leur taille ou encore la distance qui les sépare.
Les graphiques en colonnes 3D, cônes 3D ou pyramides 3D ont un troisième axe, l'axe de profondeur (également appelé axe des séries ou axe z), de sorte que les données peuvent être tracées le long de la profondeur d'un graphique.
La représentation graphique s'articule autour de 2 axes perpendiculaires: Un axe horizontal appelé l'axe des abscisses. Un axe vertical appelé l'axe des ordonnées.
Pour déterminer l'abscisse du point d'intersection avec l'axe des abscisses, il faut trouver la valeur de x pour laquelle y = 0 y=0 y=0 . Pour déterminer l'ordonnée du point d'intersection avec l'axe des ordonnées, il faut trouver la valeur de y pour laquelle x = 0 x=0 x=0 .
Ainsi : La pente de la l'équation se calcule avec la formule m=−AB. L'ordonnée à l'origine se calcule avec la formule b=−CB. L'abscisse à l'origine se calcule avec la formule a=−CA.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
La plus petite abscisse possible pour un point de Cf est –5 tandis que la plus grande abscisse possible est 6 : f est donc définie sur l'intervalle [–5 ; 6].
L'abscisse du point B est égale à 2. L'abscisse du point C est égale à 0.
Réponse. Pour déterminer l'angle aigu, 𝛼 , entre deux droites dans le repère cartésien, on utilise la formule t a n 𝛼 = | | | 𝑚 − 𝑚 1 + 𝑚 𝑚 | | | , où 𝑚 et 𝑚 sont les coefficients directeurs des deux droites. Il faut donc déterminer les coefficients directeurs des deux droites données.