Théorème Soient a et b deux réels. Une équation du cercle de centre \Omega(a\: ; b) et de rayon r est (x-a)^{2}+(y-b)^{2}=r^{2}. On peut également écrire x^{2}+y^{2}-2 a x-2 b y+c=0 avec c=a^{2}+b^{2}-r^{2}.
Pour cela vous choisissez un point A quelconque de la circonférence et vous le joignez à deux autres points distincts de la circonférence,B et C. Les cordes AB et AC ne sont pas parallèles. Vous tracez les deux médiatrices de AB et AC. Ces deux médiatrices se coupent en un point O qui est le centre cherché du cercle.
Méthode 1 : rapide et efficace !
Placez le cercle devant vous et prenez la règle. Mesurez d'abord le point le plus large du cercle, puis replacez la règle sur le cercle et placez des points à la moitié du point le plus large.
En pratique, il suffit de tracer deux médiatrices pour déterminer le centre du cercle circonscrit à un triangle. On trace les médiatrices du triangle (il suffit d'en tracer deux). Leur point d'intersection O donne le centre du cercle circonscrit.
Le milieu d'un segment est le point situé à égale distance des deux extrémités. On peut trouver les coordonnées du milieu de 𝐴 𝐵 en divisant par deux chacune les distances horizontales et verticales entre 𝐴 et 𝐵 .
Cercle circonscrit à un triangle
Le centre du cercle est donc équidistant des sommets du triangle. Afin de trouver ce centre, il faut tracer les médiatrices des triangles, qui sont les droites passant par le milieu des côtés perpendiculairement et le centre se trouve au point de concours des médiatrices.
Divisez la circonférence par π pour obtenir son diamètre. Ensuite, il vous suffit de diviser le diamètre par deux pour obtenir le rayon.
C'est très simple. Il suffit de multiplier le rayon par deux pour obtenir le diamètre. Ensuite, j'applique la formule de calcul de la circonférence, soit Diamètre(D) x π (pi). Le périmètre d'un disque de 3 cm de rayon est donc de 18,85 cm.
En géométrie, un rayon d'un cercle ou d'une sphère est un segment de droite quelconque reliant son centre à sa circonférence. Par extension, le rayon d'un cercle ou d'une sphère est la longueur de chacun de ces segments. Le rayon est la moitié du diamètre.
Le centre du cercle circonscrit d'un triangle ABC est le point de concours (l'unique point d'intersection) de ses trois médiatrices. Dans le plan, on peut calculer ses coordonnées en écrivant les équations de deux de ses médiatrices puis en résolvant le système de deux équations à deux inconnues ainsi formé.
Le cercle inscrit d'un triangle est l'unique cercle qui est tangent aux trois côtés d'un triangle. Le centre du cercle inscrit est l'intersection des trois bissectrices du triangle.
Cette petite équerre à centrer va permettre à l'opérateur de venir tracer des repères pour trouver très précisément le centre d'un cylindre, pour y effectuer un perçage ou une découpe par exemple. Pour cela il faudra bien positionner les ergots de l'équerre sur le champ du cylindre pour réaliser un traçage de qualité.
Avec le rayon connu, la formule est 2r × π ; avec le diamètre connu, la formule est d × π, donc 10 × 3,14 = 31,4 m.
L'angle au centre
Un angle au centre est un angle formé par deux rayons d'un cercle. Le sommet de cet angle se situe au centre du cercle. Les angles orange et mauve dans le cercle ci-dessous sont des angles au centre puisqu'ils sont formés par deux rayons du cercle.
Pour trouver le rayon, pense que le diamètre égal à deux fois le rayon. Le diamètre d'un cercle s'obtient en divisant son périmètre par π qui est proche de 3,14. Le second cercle a donc un diamètre de 1,5 cm et un rayon de 0,75 cm.
Avec le rayon, la circonférence ou l'aire
Exemple : Un cercle de 4 cm de rayon a un diamètre de 8 cm (4 cm x 2). et sur une calculatrice, pour une valeur plus précise, appuyez sur la touche π . , calculez la racine de ce résultat, puis multipliez par 2, et vous avez votre diamètre.
La méthode de Monte-Carlo pour calculer π se fonde sur un principe très simple : la surface d'un disque de rayon r est πr2. Elle permet d'obtenir expérimentalement quelques décimales de π.
Vérifions ensuite avec la formule au cas où l'on ne connaisse pas déjà le diamètre, il faudrait poser, à partir du périmètre du cercle : Rayon = Périmètre du cercle / π / 2.
La distance séparant les points du cercle de son centre est appelée le rayon du cercle. Si les coordonnées du centre sont (0, 0), on dit que le cercle est centré à l'origine. L'équation d'un cercle de rayon r et centré à l'origine d'un système d'axes cartésiens est : x2+y2=r2.
Pi est un nombre irrationnel (c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique). Les premières sont : 3,14159265358979323846264338327950288419716939937510582. Dans la pratique, on utilise 3,14 mais il est souvent aisé de retenir 22 septièmes ou racine de 10 pour valeur approchée de Pi.
Elle a été prouvée ci-dessus : AO = BO = CO, donc le cercle de centre O et passant par A passe aussi par B et C. Si un cercle passe à la fois par A et B, son centre appartient à la médiatrice de [AB]. S'il passe par A et C, son centre appartient à la médiatrice de [AC].
Droite perpendiculaire à un segment et passant par son milieu. (C'est l'ensemble des points d'un plan contenant ce segment, équidistants de ses extrémités.)
Dans un jeu de données de petite taille, il suffit de compter le nombre de valeurs (n) et de les ordonner en ordre croissant. Si le nombre de valeurs est un nombre impair, il faut lui additionner 1, puis le diviser par 2 pour obtenir le rang qui correspondra à la médiane.
Propriété : Si deux points sont symétriques par rapport à un point alors ce point est le milieu du segment d'extrémités ces deux points. Propriété : Si une droite passant par un sommet d'un triangle est une médiane du triangle alors elle coupe le côté opposé à ce sommet en son milieu.