Une équation du cercle de centre Ω(a;b) et de rayon r est (x−a)2+(y−b)2=r2.
Tracez une ligne droite qui coupe le cercle en deux points A et B (la corde du cercle). Tracez le centre C de la corde AB. Tracez la perpendiculaire à la ligne AB passant par le point C qui coupe le cercle en D et E (le diamètre du cercle). Déterminez le centre de la ligne DE qui sera aussi le centre du cercle.
Cercle passant par 3 points
Mais si nous prenons les points B et C, le centre doit être sur la médiatrice de [BC]. Ainsi, le centre O du cercle cherché doit être à l'intersection de la médiatrice de [AB] et celle de [BC], ce qui donne OA = OB = OC et donc O est aussi sur la médiatrice de [AC].
Pour trouver le point milieu d'un segment, on peut utiliser l'équation suivante : Point milieu =(x1+x22,y1+y22) Point milieu = ( x 1 + x 2 2 , y 1 + y 2 2 ) , où (x1,y1) ( x 1 , y 1 ) et (x2,y2) ( x 2 , y 2 ) sont les coordonnées des deux extrémités d'un segment.
Donc, si un cercle passe par les trois points A, B et C, son centre appartient à la fois aux médiatrices de [AB] et de [AC], c'est-à-dire à leur intersection. Celle-ci se réduit à un point, O ; le cercle a donc nécessairement pour centre O. Le rayon du cercle est donc égal à AO.
À l'aide d'un compas, tracez par-dessus le premier cercle, deux cercles qui se croisent en deux points. Ils doivent être identiques (mêmes rayons), l'un en bas et à droite du premier cercle, l'autre en bas et à gauche. A sera le centre d'un des cercles et B, le centre de l'autre.
En pratique, il suffit de tracer deux médiatrices pour déterminer le centre du cercle circonscrit à un triangle. On trace les médiatrices du triangle (il suffit d'en tracer deux). Leur point d'intersection O donne le centre du cercle circonscrit.
Calculer les coordonnées du point Ω centre du cercle circonscrit au triangle ABC. Le centre du cercle circonscrit au triangle ABC est le point d'intersection des médiatrices des trois côtés du triangle. Le centre du cercle circonscrit au triangle ABC a pour coordonnées Ω(2;−1) Ω ( 2 ; - 1 ) .
Un rayon est égal à la moitié du diamètre. Tous les diamètres passent par le centre du cercle. Un rayon est égal à la moitié d'un diamètre.
Placez 2 tiges droites sur 2 cotés de votre table aux coins arrondis. Mesurez la distance entre le début du fléchissement de la courbe jusqu'au croisement des 2 tiges. C'est le rayon.
Le périmètre P d'un cercle de rayon r s'écrit : P = 2 × π × r. La touche π de la calculatrice nous donne : 3,141 592… On donne du périmètre une valeur approchée, ici la valeur arrondie au centième : 17,59 cm. Inversement, on peut calculer le diamètre d'un cercle (ou son rayon), connaissant son périmètre.
Le centre de symétrie :
Une figure admet un centre de symétrie si son image par la symétrie centrale de centre O est elle-même. Exemple : Dans le cas représenté ci-contre, si tu opères un demi-tour autour de O, la figure reste inchangée. Le point O est donc le centre de symétrie.
Deux figures sont symétriques par rapport à un point si elles sont superposables par demi-tour autour de ce point. Ce point est appelé le centre de la symétrie. Exemple : Les figures (F ) et (F ') sont symétriques par rapport au point O, donc le point O est le centre de la symétrie.
Rayon d'un cercle
Donc le même mot désigne soit une longueur, soit un segment de droite. Si on parle d'un segment de droite, on dit "un rayon", et si on parle de la distance entre un point d'un cercle et son centre, on dit "le rayon".
Les bissectrices sont concourantes en un point qui est le centre du cercle inscrit dans le triangle ABC. Ce cercle est tangent intérieurement aux côtés du triangle. Les médiatrices sont concourantes en un point qui est le centre du cercle circonscrit au triangle ABC.
Le centre de gravité (G) du triangle quelconque se trouve à l'intersection des trois médianes (AMA , BMB , CMC). Le centre de gravité est situé au 2/3 de la médiane en partant du sommet. au (1/3, 2/3) de la médiane.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure. La bissectrice d'un angle peut également être définie comme l'ensemble des points à égale distance des deux côtés de l'angle. Cette deuxième définition permet de tracer la bissectrice d'un angle avec un compas.
Méthode avec un compas et une règle
Placer la pointe sèche du compas sur une extrémité du segment et tracer un cercle. Répéter l'étape 2 à partir de l'autre extrémité du segment. À l'aide d'une règle, tracer la droite qui relie les deux intersections des cercles. Cette droite est la médiatrice du segment.
Droite perpendiculaire à un segment et passant par son milieu. (C'est l'ensemble des points d'un plan contenant ce segment, équidistants de ses extrémités.)
* 6 Si la distance d'un point au centre d'un cercle est égale au rayon de ce cercle alors ce point appartient au cercle. * 6 Si un point appartient à un cercle alors la distance de ce point au centre du cercle est égale au rayon du cercle.
Dans un triangle, si trois lignes sont tracées en partant de chaque angle et en coupant le côté opposé à angle droit, elles se rencontrent en un point d'intersection, qui est appelé orthocentre, en géométrie.
Le centre de gravité d'un triangle est au 2/3 en partant du sommet de chacune de ses médianes.