30=5×6 30 = 5 × 6 On remarque que le facteur 5 est premier, mais que 6 ne l'est pas. Pour obtenir la factorisation première de 30 , on devra factoriser le nombre 6 . 30=5×6⇒30=5×2×3 30 = 5 × 6 ⇒ 30 = 5 × 2 × 3 Cette nouvelle factorisation est première, car tous les facteurs sont premiers.
Le pgcd (plus grand commun diviseur) de plusieurs nombres décomposés en facteurs premiers, est égal au produit de tous les facteurs premiers communs à ces nombres, chacun d'eux n'est pris qu'une seule fois, avec son exposant le plus petit. 45 = 3×3×5 = 3²×5. Le pgcd = 3×5 = 15.
Décomposer en produit de facteurs premiers
On décompose 120 en produit de facteurs premiers : 120 est divisible par 2 donc 120= 2\times 60. 60 est divisible par 2 donc 60= 2\times 30.
En mathématiques, un facteur est l'un des éléments constitutifs d'un produit. Par exemple, le produit 2 × 3 comporte deux facteurs 2 et 3, ou encore 3 × 7 × 12 admet 7 comme facteur.
Ce sont les seuls nombres qui se multiplient en 14, ce qui signifie que les facteurs de 14 sont 1, 2, 7 et 14.
75 = 25 + 25 + 25.
1. Décomposer les nombres 162 et 108 en produits de facteurs premiers. 162 = 2 x 34 ; 108 = 22 x33.
Le nombre 36 peut être donc décomposé en produit de facteurs premiers 2, 2, 3, 3.
126 = 2 × 63 = 2 × 2 × 6 75 = 3 × 25 = 2 × 2 × 2 × 3 63 n'est pas divisible par 2. 25 n'est pas divisible par 3. 3 est un nombre premier.
Par exemple, si le nombre donné est 45, la factorisation en nombres premiers est 32 × 5, soit 3 × 3 × 5.
Locution nominale. (Mathématiques) Nombre premier qui divise exactement un entier naturel en question. Tout nombre pair admet le nombre 2 comme facteur premier par définition.
Les vingt-cinq nombres premiers inférieurs à 100 sont : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, et 97.
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers.
Algèbre Exemples. 125 a des facteurs de 5 et 25 .
La décomposition en facteurs premiers de 140 est : 140 = 2×2×5×7. La décomposition en facteurs premiers de 870 est : 870 = 2×3×5×29.
On peut décomposer 324 en produit de facteurs premiers pour aider : 324 = 22 × 34. Les diviseurs de 324 sont 1 ; 2 ; 3 ; 4 ; 6 ; 9 ; 12 ; 18 ; 27 ; 36 ; 54 ; 81 ; 108 ; 162 ; 324. Il y a donc deux possibilités : 36 et 54. On peut faire 9 groupes de 36 ou 6 groupes de 54.
34 = 2x17. 91 = 13x17. 9 438 = 2×3×11×11×13.
Exemple 1 Rendre irréductible la fraction . On décompose 68 et 51 en produits de facteurs premiers. 68 = 2 × 34 = 2 × 2 × 17 = 2 × 17 et 51 = 3 × 17.
21 + 21 + 21 = 63 est une écriture du nombre 63 avec des additions, c'est-à-dire que l'on a ajouté des nombres entre eux pour obtenir 63. On parle aussi de décomposition du nombre.
Il existe une méthode pour décomposer : exemple : décomposons 84 : Je divise par les nombres premiers : 2-3-5-7-11-13…..
On peut décomposer le nombre 60 en facteurs premiers : 60 = 2 × 2 × 3 × 5.