Définition 5 Le polynome minimal d'une matrice A est un polynôme M de degré minimal tel que M(A) = 0 et de coefficient dominant égal à 1. Un tel polynome divise tous les polynomes tels que P(A) = 0, il divise le polynome caractéristique de A et il a les mêmes racines que le polynome caractéristique.
Un polynôme du second degré P(x) = ax² + bx + c admet au plus deux racines. Le nombre exact de ses racines est déterminé par le signe d'un expression notée Δ qu'on appelle le discriminant. Δ = b² - 4ac.
Polynômes annulateurs. — Un polynôme non nul q de K[x] est dit annulateur d'une matrice A de Mn(K), si la matrice q(A) est nulle ; on dit aussi que A est racine du polynôme q.
On appelle polynôme annulateur de un polynôme non nul appartenant à tel que P ( f ) = 0 .
Le polynome caractéristique (ou polynome annulateur ou parfois déterminant séculaire) P d'une matrice carrée M de taille n×n n × n est le polynome défini par PM(x)=det(M−x.In)(1) I n ) ou PM(x)=det(x.In−M)(2) I n − M ) avec In la matrice identité de taille n (et det le déterminant matriciel).
Pour déterminer/trouver les valeurs propres d'une matrice, calculer les racines de son polynôme caractéristique. Exemple : La matrice 2x2 (d'ordre 2) M=[1243] M = [ 1 2 4 3 ] a pour polynôme caractéristique P(M)=x2−4x−5=(x+1)(x−5) P ( M ) = x 2 − 4 x − 5 = ( x + 1 ) ( x − 5 ) .
On appelle vecteur propre de tout vecteur , non nul de , vérifiant : f ( x ) = λ x . (Les vecteurs propres sont donc les vecteurs dont la direction est inchangée par l'application ). Le scalaire l ∈ K est appelé valeur propre associée au vecteur .
Un polynôme est unitaire si son coefficient adeg(P ) de plus haut degré est égal à 1. 5. La somme, la différence, le produit de deux polynômes, le produit d'un polynôme par un élément de K ont un sens naturel et possèdent les propriétés requises (commutativité, associa- tivité, distributivité, . . . )
La matrice M est diagonalisable si et seulement si la somme des multiplicités géométriques est égale à la taille de M. Or chaque multiplicité géométrique est toujours inférieure ou égale à la multiplicité algébrique correspondante.
Si F = K on dit que f est une forme linéaire. Si F = E, f est appelée un endomorphisme. Pour montrer que f est une application linéaire, il suffit de vérifier que f(u + λv) = f(u) + λf(v) pour tous u, v ∈ E,λ ∈ K.
En algèbre, un polynôme est dit scindé sur un corps commutatif K s'il est décomposable en facteurs de degré 1 sur K. C'est toujours le cas si K est un corps algébriquement clos ; En algèbre homologique, une suite exacte courte dans une catégorie abélienne est dite scindée s'il existe une section du second morphisme.
Un endomorphisme u de E est diagonalisable s'il existe une base de E formée de vecteurs propres pour u . Une matrice est diagonalisable si elle est semblable à une matrice diagonale.
- Si Δ > 0, alors l'équation admet deux solutions réelles notées x1 et x2. On a alors : x1 = (−b − √Δ ) / (2a) et x2 = (−b + √Δ ) / (2a) ; - Si Δ = 0, alors l'équation admet une solution réelle double notée x0.
Autrement dit, c'est le quotient du terme dominant du numérateur et du terme dominant du dénominateur qui a donné sa limite à g(x) en +¥. Par exemple : les limites de la fonction rationnelle h(x) = en -¥ et +¥ sont celles du quotient de ses deux termes dominants .
Polynôme unitaire : polynôme dont le coefficient du terme de plus haut degré est 1 ; Polynôme cyclotomique : pour tout entier n > 0, le n-ième polynôme cyclotomique est le produit des X – ζ, avec ζ parcourant les racines complexes n-ièmes primitives de l'unité.
Une matrice scalaire est une matrice diagonale (à coefficients dans un anneau) dont tous les coefficients diagonaux sont égaux, c'est-à-dire de la forme λIn où λ est un scalaire et In la matrice identité d'ordre n.
Additionnez les trois cofacteurs.
Trois cofacteurs, un pour chaque coefficient d'une seule ligne (ou colonne), que vous additionnez et vous aurez le déterminant de la matrice 3 x 3. Pour notre exemple, cela donne : (-34) + (120) + (-12) = 74.
Pour démontrer qu'une matrice A est diagonalisable, la méthode la plus classique consiste à calculer le polynôme caractéristique χA et à le factoriser pour déterminer les valeurs propres de A . Si χA n'est pas scindé, A n'est pas diagonalisable. Si χA est scindé à racines simples, A est diagonalisable.
Un polynôme nul est un polynôme dont tous les coefficients sont nuls, y compris le coefficient constant.
Pour le degré du polynôme nul on pose par convention deg(0) = −∞. – Un polynôme de la forme P = a0 avec a0 ∈ K est appelé un polynôme constant. Si a0 = 0, son degré est 0.
La valuation d'un polynôme est le plus petit exposant apparaissant dans sa forme réduite. Par exemple, la valuation du polynôme f(x) = 9. x4 - 3. x3 + 5.
On appelle noyaude la matrice A, noté Ker (A) , l'ensemble des matrices colonnes X ∈ Mq,1(R) telles que AX = (0)p×1 .
Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.
Il faut donc trouver tous les sous-espaces propres et additionner leurs dimensions pour savoir si une matrice est diagonalisable ou pas. Prenons par exemple une matrice 3 x 3 notée M. On nous dit que les valeurs propres sont 4 et 9. Il n'y a donc que 2 valeurs propres pour un espace de dimension 3.
Par définition, la matrice P est la matrice dont les colonnes sont les matrices des vecteurs de b dans la base c (dans lГordre). Comme c est la base canonique de R3, cela revient à écrire les coordonnées des vecteurs deb en colonne : P = ⎛⎝ 1 1 1 1 0 1 0 1 1 ⎞ ⎠.