Les racines d'une fonction
Une fonction (polynôme) de degré 3 est une fonction qui peut s'écrire sous la forme f(x) = ax3 + bx² + cx + d avec a un réel non nul, b, c et d trois réels. La fonction f définie par f(x) = –2x3 + 3x² – 5x + 1 est une fonction du troisième degré. On identifie les coefficients : a = –2 ; b = 3 ; c = –5 ; d = 1.
Théorème 1. x 3 + p x + q = 0 x^3 + p x + q = 0 x3+px+q=0. Cette formule permet de calculer une solution de l'équation, dans le cas où il n'y a pas de racine évidente.
➡️ Par exemple, pour un polynôme du second degré P(x) = ax² + bx + c, les racines peuvent être trouvées en résolvant l'équation quadratique ax² + bx + c = 0 à l'aide de la formule quadratique. Autrement dit, un réel a est un racine de P si P(a) = 0. On dit aussi que a est solution de l'équation P(x) = 0.
Si un polynôme P de degré 3 admet une racine réelle α , alors ce polynôme est factorisable par (x −α). on a alors : P(x) = (x −α)×Q(x) où Q(x) est un polynôme de degré 2. Utilisation : Le polynôme P(x) = x3 −4x2 −7x +10 admet comme racine évidente le nombre 1.
Comment trouver la racine évidente ? Lorsque l'énoncé demande de chercher une racine évidente, il s'agit d'utiliser sa calculatrice pour calculer le polynôme en certaines valeurs ($-3\ ; -2\ ; -1\ ; 0\ ; 1\ ; 2\ ; 3$). On trouve à l'aide de la calculatrice que $-2$ est une racine, c'est-à-dire $P(-2) = 0$.
Racine cubique :
La racine cubique d'un nombre réel y y y est l'unique nombre x x x qui, élevé à la puissance 3 3 3, c'est-à-dire multiplié trois fois par lui-même, vaut y y y. Ainsi, y = x 3 y = x^3 y=x3. La racine cubique de y y y est notée y 3 \sqrt[3] {y} 3y .
Une racine complexe d'un polynôme P est un nombre complexe z tel que P(z) = 0. Par exemple, nous savons maintenant que le nombre complexe i est une racine complexe du polynôme X2 + 1 puisque i2 = −1. Le polynôme X2 + 1 est donc factorisable dans C : X2 +1=(X − i)(X + i).
On appelle racine d'un polynôme réel ou complexe une racine d'un polynôme P(X) à une seule variable dont les coefficients sont réels ou complexes, c'est-à-dire un nombre α, réel ou complexe, vérifiant P(α) = 0.
Pour multiplier ou diviser des racines carrées, on utilise la propriété selon laquelle la racine carrée du produit est égale au produit des racines carrées et la racine carrée du quotient est égale au quotient des racines carrées. 👉🏼 Par exemple : √3 × √7 = √21. √12 ÷ √4 = √3.
Par conséquent, pour trouver les zéros de cette fonction, nous devons résoudre l'équation 𝑓 ( 𝑥 ) = 0 . Voici l'équation 1 3 ( 𝑥 − 4 ) = 0 . La multiplication par 3 donne 3 × 1 3 ( 𝑥 − 4 ) = 3 × 0 𝑥 − 4 = 0 . On ajoute ensuite 4 aux deux membres de l'équation 𝑥 − 4 + 4 = 0 + 4 𝑥 = 4 .
Résoudre un système de trois équations d'inconnues x, y et z revient à chercher tous les triplets (x ; y ; z) qui vérifient ces trois équations. Un tel triplet de valeurs (x ; y ; z) est appelé « solution du système d'équations ».
Racine d'une fonction polynôme du second degré
Soit f une fonction polynôme du second degré. On dit que \alpha est racine de f si et seulement si f(\alpha)=0. 1 est donc racine de f. Une racine d'une fonction polynôme du second degré f est une solution de l'équation f(x)=0 .
C'est Leonhard Euler (1707-1783) qui aura éclairci la détermination des trois racines d'une équation cubique.
Application à la résolution d'équations
En effet, si un polynôme P de degré n a une racine α, il peut se factoriser sous la forme P(X) = (X – α)Q(X), où Q est de degré n – 1. La résolution de l'équation (de degré n) P(x) = 0 se ramène alors à celle de l'équation (de degré n – 1) Q(x) = 0.
On calcule le discriminant Δ = b2 – 4ac de la fonction polynôme f définie par f(x) = ax2 + bx + c. Étudier le signe du discriminant Δ. Si Δ < 0, alors cette équation n'admet pas de solutions réelles. Si Δ = 0, alors cette équation admet une solution unique .
Il existe un moyen de résoudre une équation du second degré sans passer par le calcul du discriminant: la factorisation. Cette méthode consiste à trouver une relation entre le produit de a par c d'une part, et b de l'autre.
La somme est obtenue en faisant la somme de tous les produits de la colonne de droite. Les sommes. < i p ≤ n λ i 1 λ i 2 … λ i p sont appelées les fonctions symétriques élémentaires des racines. Intérêt : Toute fonction symétrique des racines s'exprime à l'aide des donc des coefficients du polynôme.
- Si Δ > 0, alors l'équation admet deux solutions réelles notées x1 et x2. On a alors : x1 = (−b − √Δ ) / (2a) et x2 = (−b + √Δ ) / (2a) ; - Si Δ = 0, alors l'équation admet une solution réelle double notée x0.
Étape 1 : Calcul du discriminant Δ = b² - 4ac. Si Δ < 0 : Pas de solution à l'équation ; Si Δ = 0 : Une seule solution S = -b/2a ; Si Δ > 0 : Deux solutions à l'équation S = {(-b-racine(Δ))/2a, (-b+racine(Δ))/2a}.
Une racine est dite simple si elle est d'ordre 1, double si elle est d'ordre 2,. . .
Tout nombre complexe non nul admet exactement deux racines carrées, qui sont opposées! On dispose de deux méthodes pour résoudre l'équation z2=w : Écrire w=a+ib, z=x+iy, et procéder par identification des coefficients. Utiliser le module permet d'apporter une équation supplémentaire qui simplifie beaucoup les calculs.
En mathématiques, une racine d'un polynôme P(x) est une valeur α telle que P(α) = 0. C'est donc une solution de l'équation polynomiale P(x) = 0 d'inconnue x, ou encore, un zéro de la fonction polynomiale associée. Par exemple, les racines de x2 – x sont 0 et 1.
Pour trouver une racine évident en fait, vous essayer avec des nombres de base comme 1, -1, 2, 3, etc. Il faut maintenant trouver ce R(x) en effectuant une division polynomiale de Q par (x + 1). Donc : R(x) = x2 - x - 6 et P(x) = (x + 1)(x + 1)(x2 - x - 6).
Exemple : la racine carré de 4, qui s'écrit aussi √4 est égal à 2 car 22, soit 2 x 2 = 4. la racine carrée de 16 est 4, car 42, soit 4 x 4 = 16. la racine carrée de 81 est 9 car 92, soit 9 x 9 = 81.