Si vous connaissez la longueur du plus petit côté (situé à l'opposé de l'angle à 30 degrés), multipliez cette longueur par 2 pour obtenir la longueur de l'hypoténuse. Ainsi, si le plus petit côté est de 4, l'hypoténuse sera de 8 (4 x 2).
Le côté le plus long est [BC]. donc BC² = AB² + AC² On a l'égalité de Pythagore, donc le triangle est rectangle en A. Si le carré de la longueur du plus grand côté d'un triangle n'est pas égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle n'est pas rectangle.
Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
L'hypoténuse d'un triangle rectangle est le côté qui est en face de l'angle droit. C'est le plus long des trois côtés du triangle. Un triangle rectangle A B C où l'angle C est de quatre-vingt-dix degrés. À l'intérieur du triangle, une flèche pointe du point C à l'hypoténuse.
Vous avez trois côtés : a, b, et c. C'est l'hypoténuse, et a et b sont les deux autres côtés. Écrivez l'équation du théorème de Pythagore : c² = a² + b². Cela signifie que la somme des carrés des deux côtés plus courts (a² + b²) est égale au carré du côté le plus long (c²).
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Théorème de Pythagore : Dans un triangle ABC rectangle en A, on a BC2=AB2+AC2. On peut réécrire cette égalité en AB2=BC2−AC2 pour déterminer la longueur AB ou en AC2=BC2−AB2 pour déterminer la longueur AC.
Utilisation du théorème de Pythagore pour calculer la longueur d'un côté d'un triangle rectangle : Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est un triangle rectangle en A, alors BC² =AB² + AC² .
Le théorème de Pythagore décrit la relation qui existe entre les trois côtés d'un triangle rectangle X Source de recherche . Il pose que, pour un triangle rectangle dont les côtés adjacents à l'angle droit sont a et b et l'hypoténuse est c, on a : a2 + b2 = c2 X Source de recherche .
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
Calculez l'hypoténuse du triangle isocèle. Comme indiqué précédemment, calculer l'hypoténuse du triangle isocèle équivaut à calculer la longueur de l'un des deux cathets (AC ou CB). Nous divisons la base AB par 2 et obtenons: AH = AB / 2 = 2 cm.
d. Quelle est l'hypoténuse du triangle SEC ? L'hypoténuse de SEC est le côté [CE].
Formule : Le théorème de Pythagore énonce que la somme des carrés des longueurs des côtés adjacents est égale au carré de la longueur de l'hypoténuse. Cela se traduit mathématiquement par : a² + b² = c²
Un angle et l'hypoténuse
Pour trouver les côtés du triangle rectangle, appliquez la loi des sinus ou utilisez les principes de la trigonométrie : a = c × sin(α) ou a = c × cos(β) b = c × sin(β) ou b = c × cos(α)
Dans un triangle rectangle ABC, où l'angle droit est B, l'hypoténuse est donc le côté AC. Pythagore a ainsi théorisé que le carré de la longueur de l'hypoténuse est égal à la somme des carrés des 2 autres côtés (soit dans notre exemple, AC2 = AB2 + BC2).
ABC est un triangle équilatéral. Si R est le rayon du cercle circonscrit, la hauteur h du triangle est AH = AO + OH = R. Avec le calcul de la hauteur h = a , en simplifiant R = a , on trouve que a, longueur du côté BC, est égal à R .
L'hypoténuse est alors le plus grand côté du triangle, et sa longueur est reliée à celles des deux autres côtés par le théorème de Pythagore. Cette relation est même caractéristique des triangles rectangles.
Exemple de mesure de longueur
On note en résumé : largeur = 21 cm = 21 × 1 cm = 21 × 0,01 × 1 m = 0,21 m et longueur = 29,7 cm = 29,7 × 1 cm = 29,7 × 0,01 × 1 m = 0,297 m .
D'après le théorème de Thalès, on a AB AM = AC AN = BC MN , soit 3 7 = AC 4 = BC MN . On utilise la propriété des produits en croix pour calculer la longueur demandée. Calcul de AC : 7 × AC = 3 × 4 soit AC = 3 × 4 7 = 12 7 donc AC = 12 7 cm. Exemple 2 : Sur la figure ci-contre, les droites (CD) et (HT) sont parallèles.
La formule de Héron stipule que l'aire 𝐴 d'un triangle de côtés de longueurs 𝑎 , 𝑏 et 𝑐 est 𝐴 = √ 𝑑 ( 𝑑 − 𝑎 ) ( 𝑑 − 𝑏 ) ( 𝑑 − 𝑐 ) , où 𝑑 est le demi-périmètre du triangle ou la moitié de son périmètre.
Le triangle rectangle isocèle : si l'on connaît l'hypoténuse de ce rectangle, on peut arriver à trouver la valeur des cathètes en posant cette longueur comme la variable x pour obtenir l'équation x2 + x2 = c2 qui à son tour devient 2x2 = c2.
Si vous prenez un triangle d'aire S possédant deux angles de mesure α et β , alors vous connaissez une mesure du troisième angle qui est γ=π−α−β γ = π − α − β .
Par exemple, le cosinus est le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse. Quant à la tangente, elle est le rapport entre la fonction sinus et cosinus.