ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
L'ANOVA univariée est généralement utilisée lorsque l'on a une seule variable indépendante, ou facteur, et que l'objectif est de vérifier si des variations, ou des niveaux différents de ce facteur ont un effet mesurable sur une variable dépendante.
Le test t est un test d'hypothèse statistique utilisé pour comparer les moyennes de deux groupes de population. L'ANOVA est une technique d'observation utilisée pour comparer les moyennes de plus de deux groupes de population. Les tests t sont utilisés à des fins de test d'hypothèses pures.
L'écart-type sert à mesurer la dispersion, ou l'étalement, d'un ensemble de valeurs autour de leur moyenne. Plus l'écart-type est faible, plus la population est homogène.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
En première colonne figurent les sommes des carrés par rapport aux moyennes, entre classes et intra-classes. La somme des carrés intra-classes s'effectue sur le même principe. En deuxième colonne figurent les degrés de liberté, c'est-à-dire 2 (soit 3 – 1) et 39 (soit 42 - 3).
A.
Le test statistique est utile lorsqu'il faut trancher entre 2 hypothèses : H0 : hypothèse nulle, elle correspond à une situation de statu quo. H1 : hypothèse alternative, elle correspond à l'hypothèse qu'on veut démontrer.
Ouvrir XLSTAT. Sélectionner la commande XLSTAT / Modélisation / Analyse de la Variance (ANOVA). Une fois le bouton cliqué, la boîte de dialogue correspondant à l'ANOVA apparaît. Sélectionner les données sur la feuille Excel.
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
Test de Student pour échantillon unique
Si la valeur absolue de t (|t|) est supérieure à la valeur critique, alors la différence est significative. Dans le cas contraire, elle, ne l'est pas. Le degré de siginificativité (ou p-value) correspond au risque indiqué par la table de Student pour la valeur |t|.
Le terme de factor se réfère à un type de données statistiques utilisé pour stocker les variables nominales (on dit aussi qualitatives ou catégorielles). La différence entre une variable catégorielle et une variable continue, c'est qu'une variable catégorielle ne peut contenir qu'un nombre limité de catégories.
Deux tests statistiques, le test de Student et le test de Wilcoxon, sont généralement employés pour comparer deux moyennes. Il existe cependant des variantes de ces deux tests, pour répondre à différentes situations, comme la non indépendance des échantillons par exemple.
Les plus populaires sont l'AIC (Akaike's Information Criterion) et le BIC (ou SBC, Bayesian Information Criterion). Lorsque différents modèles paramétriques sont comparés, le modèle associé à l'AIC ou au BIC le plus faible a la meilleure qualité parmi les modèles comparés.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
On appelle risque alpha le risque de conclure à l'existence d'une différence qui n'existe pas en réalité: en thérapeutique, cela revient à considérer efficace un traitement qui ne l'est pas.
La prise de décision de rejet ou non de l'hypothèse nulle dans le cadre d'un test d'hypothèse. Pour prendre une décision, choisissez le niveau de significativité α (alpha), avant le test : Si p est inférieur ou égal à α, rejetez H0.
Pour calculer cette variance, nous devons calculer à quelle distance chaque observation est de sa moyenne de groupe pour les 40 observations. Techniquement, c'est la somme des écarts au carré de chaque observation de la moyenne de son groupe divisé par le degré de liberté de l'erreur.
Plus la valeur de la statistique du khi-carré est élevée, plus la différence entre les effectifs de cellules observés et théoriques est importante, et plus il apparaît que les proportions de colonne ne sont pas égales, que l'hypothèse d'indépendance est incorrecte et, par conséquent, que les variables Situation d' ...
2. Le test de Mann-Whitney. le test de Mann-Whitney est l'alternative non paramétrique de t de Student pour deux échantillons indépendants. Lorsque la distribution des valeurs ne suit pas une loi normale, donc dissymétrique, le test t de student ne s'applique pas; il faut utiliser plutôt le test de Mann-Whitney.
Or selon la théorie il faut faire un test de Fisher lorsque la présence de racine unitaire n'est pas rejetée (p. value > 5%). Dans le cas contraire, le test convenable est en principe celui de student pour tester uniquement la significativité de la tendance ou de la constante.
Si la statistique-t est supérieure à la valeur critique, alors la différence est significative. Si la statistique-t est inférieure, il n'est pas possible de différencier les deux nombres d'un point de vue statistique.
Une valeur d'écart type élevée indique que les données sont dispersées. D'une manière générale, pour une loi normale, environ 68 % des valeurs se situent dans un écart type de la moyenne, 95 % des valeurs se situent dans deux écarts types et 99,7 % des valeurs se situent dans trois écarts types.