Si f(a)=b, alors f ⁻¹(b)=a, autrement dit si a est l'antécédent de b par la fonction f, alors a est l'image de b par la fonction réciproque de f.
(Image réciproque ) Soit B ⊂ F et f : E −→ F, l'image réciproque de A par f est l'ensemble : f−1(B) = {x ∈ E/f(x) ∈ B} ⊂ E. Soit A = {0,1,2}, alors f(A) = {f(x)/x ∈ A} = {f(0),f(1),f(2)} = {1,3,5}.
4. Réciproque d'une fonction. On utilise la réciproque d'une fonction y=f(x) lorsqu'on veut exprimer la variable x en fonction de la variable y, c'est-à-dire : x=f−1(y).
On va déterminer la réciproque par intervalles. Remarquons d'abord que f f définit une bijection de ]−∞;1[ ] − ∞ ; 1 [ dans ]−∞;1[ ] − ∞ ; 1 [ par la formule f(x)=x f ( x ) = x . La bijection réciproque est donnée par f−1(y)=y f − 1 ( y ) = y .
Les fonctions sont souvent exprimées par une équation qui relie la variable x à son image. Ainsi, lorsque l'on veut déterminer l'image de xx par la fonction ff, il suffit de remplacer x dans l'équation par sa valeur ou son expression afin d'obtenir son image f(x) ou y.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Soient f une fonction définie sur un intervalle I et a ∈ I. Si f(a)= b, alors on dira que b est l'image de a par f et que a est un antécédent de b par f. L'image de 1 par f vaut 1² = 1, soit f(1 )= 1.
Réciproque du théorème de Thalès : Si, d'une part les points A,D,C et d'autre part les points A,E,B sont alignés dans le même ordre et si les deux premiers rapports de Thalès sont égaux ( A D A C = A E A B ) alors les droites (DE) et (BC) sont parallèles.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
La réciproque du théorème de Pythagore
Si dans un triangle ABC, on a BC^2=AB^2+AC^2, alors le triangle ABC est rectangle en A. D'une part, BC^2=5^2=25. D'autre part, AB^2+AC^2=3^2+4^2=9+16=25.
Une application f : E → F admet une application réciproque si et seulement si elle est bijective. Si f : E → F est bijective, alors f−1 : F → E est bijective. En effet, l'application réciproque associée `a f−1 est f : (f−1)−1 = f.
bilatéral, mutuel, partagé. Contraire : unilatéral, univoque.
Une fonction est paire si et seulement si sa courbe représentative est symétrique par rapport à l'axe des ordonnées. Une fonction est impaire si et seulement si sa courbe représentative est symétrique par rapport à l'origine du repère. On peut déterminer la parité d'une fonction par le calcul.
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
Le théorème de Pythagore établit une relation entre les longueurs des côtés d'un triangle rectangle, tandis que sa réciproque permet de déterminer si un triangle est rectangle en vérifiant cette relation.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
Théorème de Pythagore — Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
Théorème fondamental de l'algèbre. Théorème d'apprentissage. Théorème d'Archimède. Théorème fondamental de l'arithmétique.
On peut utiliser le théorème de Thalès pour montrer que deux droites ne sont pas parallèles. Le théorème de Thalès permet également de montrer que deux droites ne sont pas parallèles. On cherche à montrer que dans la configuration ci-dessus, les droites (MN) et (BC) ne sont pas parallèles.
Le théorème de Thalès est très utile lorsqu'on recherche une ou des mesures manquantes dans une figure formée par des sécantes qui croisent des droites parallèles. Remarque : Le théorème de Thalès s'applique peu importe si les sécantes (EC et BD) se croisent à l'extérieur ou à l'intérieur des parallèles (ED et BC).
4 est l'image de 8.
Les images des nombres – 1.5 ; 2.5 ; – 4 et 3.4 par la fonction h sont respectivement – ; 0.4 ; – 0.25 et . L'image de 0 par la fonction h n'existe pas.
Quelle est l'image de 6 par la fonction f ? L'image de 6 par la fonction f est 3.
Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
On donne la fonction affine f d'expression f(x)=x+3. Quelle est l'image de 3 par la fonction f ? L'image de 3 par la fonction f est 6.