Dans un plan cartésien, on peut trouver les coordonnées du point d'intersection de deux courbes (comme par exemple deux droites) en résolvant le système d'équations. Soit les droites dont les équations sont y = x – 4 et y = –2x + 5, alors : x – 4 = –2x + 5.
Un point d'intersection appartient aux deux droites, il doit donc vérifier les équations des deux droites. Ainsi, on peut trouver les coordonnées du point d'intersection en résolvant ce système d'équations, en déterminant les valeurs de 𝑥 et 𝑦 , où ( 𝑥 ; 𝑦 ) est le point d'intersection.
En géométrie, l'intersection de deux droites est le point (géométrie) du plan où elles se croisent, en d'autres termes : c'est le seul et unique point commun aux deux droites. Les deux droites a et b se croisent en A. A est donc le point d'intersection entre a et b.
Les points d'intersection du graphique d'une fonction f avec l'axe horizontal sont tous les points du graphique de la forme (a,0). De plus, la valeur x=a est un zéro de la fonction f, car f(a)=0. Ainsi, le nombre de points d'intersection du graphique avec l'axe des x est égal au nombre de zéros de la fonction.
Soient (AB) et (CD) les deux droites avec A(Xa,Ya), B(Xb,Yb), C(Xc,Yc) et D(Xd,Yd). Pour trouver l'intersection I(Xi,Yi) des droites il suffit de résoudre le système. On peut trouver une intersection seulement si [((Yb-Ya)/(Xb-Xa))-((Yd-Yc)/(Xd-Xc))] !=
1. Endroit où deux lignes, deux routes, deux chemins se croisent : À l'intersection de la nationale et de la départementale. 2. En géométrie, lieu où des lignes, des surfaces, des volumes se rencontrent et se coupent : Point d'intersection.
Intersection d'une droite et d'un plan
Il est clair que l'intersection est obtenue en résolvant un système de 3 équations à 3 inconnues. Soit la droite D donnée par { u x + v y + w z = d u ′ x + v ′ y + w ′ z = d ′ et le plan P donné par { x = a + λ u 1 + μ u 2 y = b + λ v 1 + μ v 2 z = c + λ w 1 + μ w 2 .
P[A ∩ B] = P[A] × P[B].
Trouver l'équation d'une droite à partir de deux points
Isoler le paramètre b afin de trouver la valeur de l'ordonnée à l'origine. Écrire l'équation de la droite sous la forme y=mx+b y = m x + b avec les valeurs des paramètres m et b.
Propriété : L'équation a x + b y + c = 0 avec a ≠ 0 ou b ≠ 0 est l'équation d'une droite d et, réciproquement, toute droite d a une équation du type a x + b y + c = 0.
Pour résoudre un système de deux équations linéaires à deux inconnues par la méthode de substitution, il suffit d'isoler l'une des inconnues dans l'une des équations et de remplacer cette inconnue par sa valeur dans l'autre équation.
Symbole. Le symbole utilisé est « ∩ », qui se lit « inter » ou « intersection ». Ainsi A ∩ B se lit « A inter B » ou « l'ensemble A intersection l'ensemble B ».
On vérifie donc que les deux droites n'ont pas le même coefficient directeur. Deux droites non parallèles à l'axe des ordonnées sont parallèles ou confondues si et seulement si elles ont le même coefficient directeur.
Réponse. Pour déterminer l'angle aigu, 𝛼 , entre deux droites dans le repère cartésien, on utilise la formule t a n 𝛼 = | | | 𝑚 − 𝑚 1 + 𝑚 𝑚 | | | , où 𝑚 et 𝑚 sont les coefficients directeurs des deux droites. Il faut donc déterminer les coefficients directeurs des deux droites données.
Définition: Intersection de plans
Deux plans quelconques dans ℝ de vecteurs normaux non colinéaires ont pour intersection une droite.
Des droites sécantes sont des droites qui se croisent en un seul point. On qualifie de point d'intersection le point de rencontre entre deux droites ou plus.
Si la droite (D) passe par deux points A(xA;yA) et B(xB;yB) et si xA est différent de xB, alors, on peut calculer le coefficient directeur de (D): a=(yB-yA)/(xB-xA). Soit (D) : ax+by+c=0 [Lire: la droite (D) d'équation cartésienne ax+by+c=0].
Une équation est une égalité entre deux expressions mathématiques, donc une formule de la forme A = B, où les deux membres A et B de l'équation sont des expressions où figurent une ou plusieurs variables, représentées par des lettres.
Il faut d'abord trouver la règle de chaque droite (y = ax+b) et par la suite résoudre le système d'quations (le plus facil c'est par comparaison). Les valeurs de x et y sont les coordonnées du point d'intersection. Par la suite, pour trouver y on remplace x dans une des deux formule de départ.
Notation. L'intersection de A et B se note A∩B. La réunion de A et B se note A∪B.
Pour un système complet d'événements, , la formule des probabilités totales s'écrit : P ( A ) = ∑ i ∈ I P ( A ∩ B i ) . Le théorème de Bayes, P ( A | B ) = P ( B | A ) P ( A ) P ( A ) , s'applique à de nombreuses situations de la vie réelle.
On utilise la formule P(B|A)=P(B∩A)P(A). P ( B | A ) = P ( B ∩ A ) P ( A ) .
Intersection de deux plans
Principe : On commence par trouver deux droites sécantes contenues respectivement dans chacun des deux plans Placer le point d'intersection Recommencer avec deux autres droites On obtient un deuxième point d'intersection On trace la droite qui passe par ces deux points .
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Pour trouver les intersections de la parabole avec OX, il faut résoudre l'équation 6x2+7x−3=0. On calcule b2−4ac=121=112 et donc la parabole a deux intersections avec OX : x1=−7+1112=13 et x2=−7−1112=−32.