m et p sont deux nombres donnés. La fonction f qui associe à tout nombre x le nombre mx + p est une fonction affine. Son expression algébrique s'écrit : f(x) = mx + p. m est le coefficient directeur de la fonction et on ajoute p au résultat.
Cette équation réduite est de la forme y = mx + p. On calcule la valeur de m : . On calcule la valeur de l'ordonnée à l'origine p, à partir des coordonnées du point A(3 ; 1). Comme A appartient à (d4), il vérifie l'équation y = 1x + p.
Représentation graphique : La représentation graphique d'une fonction affine f définie par f(x) = mx + p est formé par l'ensemble de tous les points de coordonnées (x ; y) tels que : y = mx + p. On admettra : Si une fonction est affine alors sa représentation graphique est une droite.
Soit une fonction affine f : x ax + b représentée dans un repère par une droite d. Les coordonnées (x ; y) d'un point M appartenant à d vérifient y = ax + b. La droite (d) représentant la fonction f définie par f(x) = ax + b a pour coefficient directeur a et pour ordonnée à l'origine b.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Une fonction affine est définie par son coefficient a et le nombre b. Il suffit ainsi de connaître les valeurs de a et b pour être en mesure de calculer l'image et l'antécédent de tout nombre par la fonction. Soit la fonction affine définie par : f\left(x\right)=2x-4.
Conclusion : pour tout nombre x, g x=− 2 5 x . On appelle fonction affine toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x + b où a et b sont des constantes. Ce nombre a est appelé coefficient directeur de la fonction affine f.
Pour trouver a et b, il faut résoudre le système. Par addition membre à membre, on obtient 2b = 4, soit b = 2. a + 2 = -3, soit a = -5. f est une fonction affine dont la représentation graphique est une droite d qui passe par les points A(0 ; 6) et B(1 ; 2).
Une fonction affine est une fonction linéaire avec l'ordonnées à l'origine b = 0 b=0 b=0. Toute fonction affine et linéaire admet une droite comme représentation graphique. Toute droite est représentée par l'équation f ( x ) = a x + b f(x)=ax+b f(x)=ax+b.
Une équation réduite est de la forme : y = mx + p, où m et p sont des nombres réels (m ≠ 0), si elle n'est pas parallèle à l'axe des ordonnées ; x = c, où c est un nombre réel, si elle est parallèle à l'axe des ordonnées ; y = p, où p est un nombre réel, si elle est parallèle à l'axe des abscisses.
Si une fonction f est affine, alors on peut l'écrire sous la forme f(x)=ax+b, où a et b sont deux nombres réels. La représentation graphique de cette fonction est une droite. Le nombre "a" est le coefficient directeur de cette droite.
Toute droite s'écrit de la forme y = a x + b y=ax+b y=ax+b, donc il suffit de déterminer les nombres a et b. On peut commencer par lire le point b sur l'axe des ordonnées. Pour en déduire le coefficient directeur a, on se positionne sur l'ordonnée à l'origine et on décale de une unité.
L'abscisse et l'ordonnée à l'origine
L'abscisse à l'origine est la valeur de l'abscisse (x) lorsque l'ordonnée (y) vaut zéro. Autrement dit, c'est l'endroit sur le graphique où la droite croise l'axe des abscisses. L'ordonnée à l'origine est la valeur de l'ordonnée (y) lorsque l'abscisse (x) vaut zéro.
Si une fonction affine est une fonction constante, c'est-à-dire qu'elle est de la forme 𝑓 ( 𝑥 ) = 𝑏 , la représentation graphique de cette fonction est toujours une droite horizontale passant par le point ( 0 ; 𝑏 ) .
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
On donne la courbe représentative d'une fonction trigonométrique. Il faut déterminer si son équation est de la forme y = asin(bx) + c ou de la forme y = acos(bx) + c et retrouver les valeurs de a, b et c.
Une fonction f définie sur est une fonction affine si elle peut s'écrire sous la forme f(x) = ax + b avec a et b réels.
alors, le coefficient directeur de la droite (AB) se calcule par la formule a = y B − y A x B − x A .
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Images et antécédents
Si une fonction f est affine et n'est pas constante, alors tout nombre admet un antécédent et un seul par la fonction f. On dit que le nombre réel x est l'antécédent du nombre réel f ( x ) f(x) f(x)
On trace une droite verticale à partir de l'antécédent dont on veut trouver l'image. On note l'unique intersection entre cette droite et le graphe de f. On trace une droite horizontale en ce point. L'intersection de cette droite avec l'axe des ordonnées nous donne l'image recherchée.
Pour calculer la norme d'un vecteur, il faut utiliser la formule ‖ v → ‖ = v x 2 + v y 2 .
coordonnées d'un point
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
x(AB*)=x(B)-x(A) c'est à dire l'abscisse du point B moins l'abscisse du point A. y(AB*)=y(B)-y(A) c'est à dire l'ordonnée du point B moins l'ordonnée du point A. Remarque : Les coordonnées du vecteur AB* représentent le chemin horizontal et vertical qui permet d'aller du point A au point B.