Deux vecteurs sont orthogonaux si leur produit scalaire est nul. C'est évident quand on se souvient de la formule du cosinus (si le cosinus de deux vecteurs est nul, c'est que ceux-ci sont orthogonaux).
Deux vecteurs sont perpendiculaires (ou orthogonaux) lorsqu'ils se coupent à angle droit. Ainsi, l'angle qui est formé par l'intersection de deux vecteurs orthogonaux est de 90∘. 90 ∘ . Pour déterminer si deux vecteurs sont perpendiculaires, on peut effectuer le produit scalaire de ceux-ci.
Deux vecteurs →u et →v de l'espace sont orthogonaux si et seulement si →u. →v=0. . Deux droites D et Δ de vecteurs directeurs respectifs →u et →v sont dites orthogonales lorsque →u et →v le sont.
Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Exemple : On considère le parallélépipède rectangle ABCDEFGH : Les droites (AB) et (CG) sont orthogonales car la parallèle (DC) à (AB) est perpendiculaire en C à (CG).
Pour que deux vecteurs soient orthogonaux, leur produit scalaire doit être nul. Afin de trouver la solution, il suffit de trouver lequel de ces vecteurs ne donne pas un produit scalaire nul lorsqu'il est multiplié avec ( 2 ; − 3 ; 5 ) .
Pour montrer qu'une droite (d) est orthogonale à un plan (P), il suffit de montrer qu'un vecteur directeur de (d) est colinéaire à un vecteur normal de (P).
Ces deux vecteurs→u et →v sont colinéaires si z→vz→u z v → z u → est un réel. Ils sont orthogonaux si ce quotient est un imaginaire pur. Le plan complexe est muni d'un repère orthonormal direct (O;→u;→v) ( O ; u → ; v → ) (…).
est non libre. Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles.
On regarde si les coordonnées des vecteurs sont proportionnelles. Si les coordonnées sont proportionnelles, alors les vecteurs sont colinéaires. Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires. Le vecteur nul →0 est colinéaire à tout vecteur.
La norme d'un vecteur est sa longueur. Nous pouvons calculer la norme de tout vecteur en deux dimensions en utilisant le théorème de Pythagore. La norme du vecteur 𝐯 est égale à la racine carrée de 𝑎 au carré plus 𝑏 au carré, où 𝑎 et 𝑏 sont les deux composantes du vecteur.
Le produit scalaire est parfois utilisé sous cette forme pour déterminer le travail d'une force lors d'un déplacement : le travail de la force F selon le trajet u est le produit scalaire des deux vecteurs. Dans la seconde illustration, ce travail est égal à –AB × AH.
Produit scalaire et vecteurs colinéaires
Si ⃗ AB et ⃗ CD sont deux vecteurs colinéaires non nuls, alors : 1er cas, vecteurs de même sens : ⃗ ⋅ C D ⃗ = A B × C D \vec {AB}\cdot \vec {CD}=AB\times CD AB ⋅CD =AB×CD.
On définit l'addition ou somme de deux vecteurs →u et →v, comme le vecteur dont les composantes sont obtenues par addition des composantes correspondantes des deux vecteurs →u et →v. On note →u+v le vecteur somme. →u+→v=(ux+vx,uy+vy). On peut donner une interprétation géométrique de cette opération.
Réponse. On rappelle que deux droites sont parallèles si leurs vecteurs directeurs sont colinéaires, et qu'elles sont perpendiculaires si elles sont sécantes et que leurs vecteurs directeurs sont orthogonaux. On commence par vérifier si leurs vecteurs directeurs sont colinéaires ou orthogonaux.
Il suffit de démontrer que l'angle formé par les deux droites est un angle droit. I Il suffit d'utiliser la propriété suivante : " Si deux droites sont parallèles, toute droite perpendiculaire à l'une est perpendiculaire à l'autre. "
Les trois points A 1 , A 2 , A 3 sont alignés si et seulement si les vecteurs A 1 A 2 → et A 1 A 3 → sont colinéaires, donc si et seulement si le déterminant des vecteurs A 1 A 2 → , A 1 A 3 → , est nul.
Pour déterminer si trois points sont alignés, il existe plusieurs méthodes. Les points A, B et C sont alignés ⇔ (AB) et (AC) ont le même cœfficient directeur . A(3 ; 7), B(0 ; –2) et C(1 ; 1) sont-ils alignés ? Les deux cœfficients directeurs sont égaux à 3, donc A, B et C sont alignés.
Les droites (d) et (d') sont parallèles si et seulement si et sont colinéaires, c'est-à-dire si et seulement si le déterminant de et de est nul. Les droites (d) et (d') sont sécantes si et seulement si et ne sont pas colinéaires, c'est-à-dire si et seulement si le déterminant de et de n'est pas nul.
Lorsque deux points A et B sont confondus, on dit que le vecteur A B → \overrightarrow{AB} AB est un vecteur nul et on note 0 ce vecteur. Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
Définition : Trois vecteurs sont coplanaires s'ils possèdent des représentants appartenant à un même plan.
On peut alors calculer l'argument de 𝑧 dans les différents quadrants comme suit : Quadrant 1 : a r g ( 𝑧 ) = 𝜃 Quadrant 2 : a r g ( 𝑧 ) = 𝜋 − 𝜃 Quadrant 3 : a r g ( 𝑧 ) = 𝜃 − 𝜋
Si les composantes cartésiennes des vecteurs →u et →v sont respectivement (a, b) et (c, d), alors →u⋅→v=ac+bd. Le produit scalaire de deux vecteurs est donc un nombre réel (un scalaire).
Soit u et v deux vecteurs de coordonnées u (xy) et v (x′y′). Alors u ⋅v =xx′+yy′. Exemple : Soit u et v deux vecteurs de coordonnées u (20,5) et v (3−4). Alors u ⋅v =2×3+0,5×(−4)=6−2=4.
L'orthogonal d'un sous-espace vectoriel engendré par une famille finie de vecteurs de est égal à l'orthogonal de cette famille : si F = V e c t ( { u 1 , u 2 , . . . , u p } ) alors F ⊥ = { u 1 , u 2 , . . . , u p } ⊥ .