Le plus petit commun multiple de 6 et de 8 est 24. Les multiples de 6 incluent : 6 : {6, 12, 18, 24, 30…} Les multiples de 8 incluent : 8 : {8, 16, 24, 32 …} Il faudrait acheter 24 boulettes de viande et 24 pains pour obtenir un nombre identique pour chacun.
En effet 1, 2 et 3 sont les diviseurs propres de 6 et 1+2+3=6. 28 est également un nombre parfait : 1+2+4+7+14=28. Les nombres parfaits sont rares, il n'en existe que trois inférieurs à 1000 qui sont 6, 28 et 496.
On dit qu'un nombre A est multiple d'un nombre B si l'on peut trouver A en multipliant B par un nombre entier. On dit alors aussi que B est un diviseur de A. Certains multiples sont reconnaissables : Multiples de 2 : leur dernier chiffre est pair : 0, 2, 4, 6 ou 8.
Une fois que vous aurez compris la démonstration, vous pourrez lire la colonne de droite, plus générale. Note: on rappellera qu'un nombre x est un multiple de a si on peut l'écrire x=ak, avec k=nombre entier (Exemple: 6 est un multiple de 3 car 6=3k (avec k=2). 9 est un multiple de 3 car 9=3k (avec k=3).
Voici un autre exemple. Utilisons l'approche de liste pour trouver le PPCM de 3 et 7. 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42,… sont tous des multiples de trois.
Dresser une liste des premiers multiples de chacun des nombres 6:{6,12,18,24,30,36,...}
Ex. : 30, 790, 9 850, 213 850, etc. Pour trouver les multiples de 3, il faut additionner tous les chiffres composant le nombre : si le total est égal à 3, 6 ou 9, c'est bien un multiple de 3. Ex. : si l'on additionne le 1 et le 2 du nombre 12, on trouve 3 (1 + 2 = 3) ; donc 12 est un multiple de 3 (3 × 4 = 12).
L'entier 0 est un multiple de tout nombre entier n, car 0 = 0 × n.
Un multiple est tout simplement le résultat d'une multiplication de nombres entiers. (Les nombres entiers sont : 1, 2, 3, 4, 5, 6 ….
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
Un nombre premier est un nombre entier positif qui admet exactement deux diviseurs : 1 et lui-même. 3 est un nombre premier car c'est un entier positif qui n'est divisible que par 1 et par lui-même. 6 n'est pas un nombre premier car il est divisible par 1, 2, 3 et 6.
Cas des nombres en (6k 1) non premier et non semi-premiers: 175, 245, 275, 325, 385, 425, 455, 475, 539, 575, 595, 605, 625, 637, 665, 715, 725, 775, 805, 833, 845, 847, 875, 925, 931, 935 … Un nombre composé de la famille est lui-même composé de facteurs de la même famille.
Zéro est multiple de tout nombre. Tout nombre est multiple de soi-même. Preuve : Soit n un nombre choisi. Le nombre 0 est le premier élément de la liste de multiples de n — on l'obtient en prenant k=0.
32 a pour diviseurs : 1, 2, 4, 8, 16 et 32. L'unique diviseur commun de 55 et 32 est 1 : PGCD (55 ; 32) = 1 Réponse : Les entiers 55 et 32 sont premiers entre eux.
b] Multiples de 6 inférieurs à 90 : 6 ; 12 ; 18 ; 24 ; 30 ; 36 ; 42 ; 48 ; 54 ; 60 ; 66 ; 72 ; 78 ; 84 ; 90.
Trouver les multiples d'un nombre
La technique pour trouver des multiples repose sur une propriété mathématique: Si la multiplication de A par B est égale à C, alors C est un multiple de A et B (A, B et C sont des nombres entiers). La multiplication de 4 par 7 est égale à 28, donc 28 est un multiple de 4 et 7.
Les multiples communs à deux nombres
Soient a, b et m trois entiers, a et b étant non nuls. Le nombre m est un multiple commun à a et à b s'il est divisible par a et par b.
Un multiple d'un nombre entier naturel est le produit de ce nombre par un nombre entier naturel. Exemples : 0 ×98 = 0 ; 1×98 = 98 et 2×98 = 196 Donc 0 ; 98 et 196 sont des multiples de 98. L'égalité 196 = 2×98 traduit que 196 est un multiple de 2 ou de 98. Chaque nombre entier naturel est multiple de 1 et de lui-même.
Pour trouver les multiples d'un nombre, il suffit de le multiplier par un autre nombre, par exemple, je prends 4, je le multiplie par 3, ça fait 12. Donc 12 est un multiple de 4.
Un nombre est divisible par 6 si et seulement s'il est divisible par 2 et par 3. 168 est divisible par 6, car il est pair et divisible par 3.
Les multiples de 6 incluent : 6 : {6, 12, 18, 24, 30…} Les multiples de 8 incluent : 8 : {8, 16, 24, 32 …}
Pour n'importe quel nombre x, son inverse est donc x' tel que x x x' = 1. Or, zéro n'a pas d'inverse puisque n'importe quel chiffre multiplié par zéro donne toujours zéro. Par conséquent, la division par zéro est impossible et aboutirait à des contresens mathématiques.
Les premiers multiples positifs de 12 sont 0 ; 12 ; 24 ; 36 ; 48 ; 60 ; 72 ; etc. Les premiers multiples positifs de 15 sont 0 ; 15 ; 30 ; 45 ; 60 ; 75 ; etc. 12 et 15 ont des multiples positifs communs : 60 ; 120 ; etc. Le plus petit est 60.