97 n'est divisible par aucun des entiers de 2 à 9. Donc 97 est un nombre premier. Propriété : Tout nombre non premier peut se décomposer en produit de facteurs premiers.
97 n'a pas de facteur hormis 1 et 97 .
Nombres premiers
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers. Il en existe une infinité.
Définition : Un nombre premier est un nombre qui n'a que deux diviseurs : 1 et lui-même. Exemples : 12 n'est pas un nombre premier car il est divisible par 1, 2, 3, 4, 6, 12. 1 n'est pas un nombre premier car il admet un seul diviseur, lui-même.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
Pour démontrer qu'un nombre n n'est pas premier, on lui trouve un diviseur autre que 1 et lui-même (voir cet exercice). Pour déterminer tous les diviseurs d'un entier n , on peut écrire le développement en produit de facteurs premiers de n .
Les 20 premiers nombres ou chiffres carréssont : 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400.
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
Pour décomposer un nombre en ses facteurs premiers, on le divise successivement par 2, 3, 5, 7, ... soit la suite des nombres premiers et on divise au besoin plus d'une fois par le même nombre. Ainsi, pour trouver les facteurs premiers de 378, on fait ces opérations. On divise 378 par 2 ; on obtient 189.
Un nombre premier est un nombre qui est divisble uniquement par lui-même et par 1. Par exemple 2, 3, 5 etc. Un facteur premier peut être noté plusieurs fois dans le produit. Le nombre 36 peut être donc décomposé en produit de facteurs premiers 2, 2, 3, 3.
Décomposition d'un nombre en produits de facteurs premiers
2 en produits de facteurs premiers. Exemple : On divise le nombre à décomposer autant de fois que possible par 2, puis par 3, par 5, par 7, par 11… en suivant la liste des nombres premiers successifs.
Pourquoi 97? parce que c'est le plus grand nombre premier inférieur à 100 (les restes de division seront toujours à deux chiffres).
Quatre-vingt-dix-sept.
Concernant 91, la réponse est : Non, 91 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 91) est la suivante : 1, 7, 13, 91. Pour que 91 soit un nombre premier, il aurait fallu que 91 ne soit divisible que par lui-même et par 1.
Lorsque l'on met x à la puissance 0, on effectue donc un produit vide. Or, une somme vide, sans aucun terme, est égale à l'élément neutre pour l'addition, c'est-à-dire 0. Ainsi, un produit de 0 terme, vide, est égal à l'élément neutre pour la multiplication, c'est-à-dire 1.22 août 2006 - Google.com.
319 = 11 × 29 donc 319 est divisible par 11 et n'est pas un nombre premier.
Par exemple 211-1 = 2047, un nombre qui n'est pas premier car il est divisible par 23 et 89.
Concernant 77, la réponse est : Non, 77 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 77) est la suivante : 1, 7, 11, 77. Pour que 77 soit un nombre premier, il aurait fallu que 77 ne soit divisible que par lui-même et par 1.
2 est un nombre premier car il n'est divisible que par 1 (2 ÷ 1 = 2) et par lui-même (2 ÷ 2 = 1) ; 4 n'est pas un nombre premier car il admet 3 diviseurs : 1, 2 et 4 ; 123 n'est pas un nombre premier, car il est divisible par 3.