En mathématiques, on dit que
Soient a et b deux entiers relatifs non nuls. On dit que a et b sont premiers entre eux lorsque leurs seuls diviseurs communs sont 1 et −1. Autrement dit, a et b sont premiers entre eux lorsque PGCD(a;b)=1.
Deux nombres entiers sont dits premiers entre eux lorsqu'il n'admette aucun diviseur commun, sinon l'unité. Par exemple 5 et 12 sont premiers entre eux, mais pas 12 et 15 qui admettent 3 comme diviseur commun.
On en déduit que l'ensemble des diviseurs communs de a et b est égal à l'ensemble des diviseurs communs de b et r. Et donc en particulier, PGCD(a ; b) = PGCD(b ; r).
PGCD(45; 28) = 1 ´ 45 et 28 sont deux nombres premiers entre eux.
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Un tel entier existe bien, et il en existe un seul vérifiant ces trois propriétés qui est le PGCD au sens de la définition précédente quand (a,b) ≠ (0,0). Avec cette définition PGCD(0,0)=0.
utilise le pgcd quand on s'occupe des diviseurs communs à ces nombres et qu'on est amené à chercher le plus grand de ces diviseurs. Le PGCD de différents nombres est un diviseur de chacun des nombres et est donc toujours inférieur ou égal à chacun des nombres.
Je crois que ça vient de l'anglais : Greatest Common Divisor (GCD). En français, on traduit ça par "Plus Grand Diviseur Commun" mais pour garder "GCD", on dit "Plus Grand Commun Diviseur". C'est en tout cas une explication que l'on m'avait donnée. michaël.
b. 46 et 124. Donne un diviseur commun évident à 46 et 124.
396 et 378 ne peuvent pas être premiers entre eux, puisqu'ils sont pairs donc divisibles au moins par 2.
Justifie. 135 et 120 ne sont pas premiers entre eux car ils ont en plus comme diviseur commun que le 1 au moins le 5. Ils ne sont pas premiers entre eux car tous les deux sont pairs, c'est-à-dire divisible par 2. Ils ne sont pas premiers entre eux car tous les deux sont divisibles par 3.
Définition des polynômes premiers entre eux
On dit que deux polynômes non tous deux nuls sont premiers entre eux si leur PGCD est égal à 1.
pour montrer que n et 2n+1 sont premiers entre eux, il suffit d'appliquer le théorème de Bézout. a et b sont premiers entre eux, si il existe u et v dans Z tq au+bv=1. ( ie pgcd(a;b)=1). alors on applique ce théorème on a -2).
36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24. Définition : Si a et b désignent deux nombres entiers, on note PGCD (a ; b) le plus grand des diviseurs positifs à a et b.
Le PPCM de 24,36 est le résultat de la multiplication de tous les facteurs premiers par le plus grand nombre de fois qu'ils apparaissent dans chaque nombre. Multiplier 2⋅2⋅2⋅3⋅3 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 .
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés.
PGCD (84 ; 270) = 6.
On dit que deux nombres sont premiers entre eux lorsqu'ils n'ont que 1 comme diviseur commun.
561÷357 (à la calculatrice touche ÷R) on obtient 1 en quotient et 204 en reste. Après, on continue : On divise le plus petit des deux nombres de la division précédente par le reste de cette division. --> Le dernier reste non nul est 51 donc PGCD (357 ; 561) = 51.
Sans surprise, c'est le 7, considéré par beaucoup comme un chiffre magique ou chanceux, qui a remporté le suffrage. 7, comme dans les sept péchés capitaux, les sept jours de la semaine, le septième ciel, les sept merveilles du monde, les sept couleurs de l'arc-en-ciel…
Le symbole de l'infini, en mathématiques et au-delà des mathématiques, est « ∞ », inventé par le mathématicien John Wallis au XVII e siècle, signe dont l'origine est controversée et dont la forme peut évoquer un « 8 » horizontal (mais ce n'est pas en référence au chiffre 8 que ce signe fut choisi) ; cette forme a été ...
Il a été sans doute découvert par des mathématiciens grecs de la haute Antiquité. Euclide (vers 300 av. J. -C.)