Actuellement tous les avions de transport sont équipés de freins à disques carbone/carbone. Le carbone-carbone est composé d'une matrice en carbone et d'un renfort en fibres de carbone.
Les aérofreins sont des surfaces mobiles situées la plupart du temps sur les ailes. Quand ils sont déployés, les aérofreins modifient l'écoulent de l'air par augmentation de la traînée, ce qui a pour effet de le ralentir l'avion.
En avion, l'atmosphère qui entoure la Terre et dans laquelle l'avion vole, se déplace en même temps que la Terre, donc l'avion n'est absolument pas influencé par la vitesse de rotation de la Terre. Vous suivez toujours ?
Que ça soit pour rouler au sol ou voler, un avion utilise la même source de poussée : ses moteurs. Certes, le régime des moteurs au sol est très faible mais c'est bien lui qui permet d'avancer, et non une quelconque motorisation située dans les roues, d'où la problématique de la marche arrière.
Un destructeur de portance, ou spoiler, est un dispositif mobile rectangulaire située sur l'extrados de l'aile d'un avion (notamment des avions de ligne). Avec les volets hypersustentateurs, les becs de bord d'attaque et les compensateurs, les spoilers font partie des commandes de vol secondaires.
Sur un avion, les forces aérodynamiques sont décomposées en une force de traînée, qui s'exerce dans la direction opposée à la vitesse de l'avion, et une force de portance, dirigée vers le haut, qui s'exerce dans une direction perpendiculaire à cette vitesse.
Ils se situent sur l'extrados, mais aussi parfois sous l'intrados de l'aile. Ils sont les plus courants. Ils sont souvent percés afin de maximiser la traînée. Sur les avions de ligne, ce sont souvent des spoilers, qui assurent en plus une fonction de gauchissement différentiel.
Comme les voitures, certains avions ont des klaxons. Il ne s'agit bien sûr pas de klaxonner un avion qui refuserait en vol la priorité à droite mais d'avertir le personnel au sol que l'on cherche à le contacter. Le son est similaire à celui d'un klaxon de camion ou de bus.
L'air qui se déplace plus lentement pousse plus fort sur l'aile que l'air qui se déplace plus rapidement. L'air sous l'aile pousse donc l'avion vers le haut, c'est pour cela que les avions restent dans le ciel et ne tombent pas.
Mais pourquoi monter si haut ? Pour s'éloigner des reliefs, passer au-dessus des nuages et éviter les turbulences ? Oui, mais essentiellement plutôt pour des raisons de densité de l'air. Plus on monte en altitude, moins l'air en effet oppose de résistance à l'avion et plus les moteurs sont efficaces.
Les faits: la Terre est attirée par le Soleil; elle ne tombe pas dessus, mais tourne autour. C'est la même chose qu'un satellite artificiel qui tourne autour de la Terre: il est attiré par elle, mais ne tombe pas parce qu'il tourne.
Pourquoi on met moins de temps à faire New York-Paris que Paris-New York ? Un avion qui part de Paris pour atterrir à New York met 7h50 à 8 h à faire le trajet. Dans le sens retour, le vol dure 45 minutes de moins environ. Un décalage systématique, du à la rotation de la Terre.
Le champ magnétique qui fait office de bouclier en déviant les particules du vent solaire est lui aussi dépendant de la rotation de la Terre. Si celle-ci s'arrêtait de tourner, ce champ magnétique s'évanouirait et nous nous retrouverions exposés à des radiations mortelles.
Les avions, à l'atterrissage et au décollage, se placent toujours face au vent. Cette règle permet de réduire au minimum leur vitesse lorsqu'ils se posent et assure leur portance au moment de prendre leur envol.
Amortisseurs à lames
Au toucher des roues, sous l'influence du poids de l'avion et de la vitesse verticale, la jambe commence à se plier pour absorber l'énergie de l'atterrissage. Comme pour le système élastique (shandow), l'énergie absorbée est ensuite dissipée dans la structure du fuselage à un débit contrôlé.
Il vous faut de la portance, une force verticale allant vers le haut pour contrer la gravité et soulever l'avion du sol. C'est le travail des ailes. Quand un oiseau bat des ailes, la source de cette poussée ascensionnelle est assez évidente.
Tant que l'avion a de la vitesse, l'air s'écoule au dessus et en dessous de son aile et il est capable de voler. Si les moteurs ne fonctionnent pas, on ne peut pas maintenir sa vitesse en gardant son altitude et on se met donc en descente.
L'avion est 300 fois plus sûr que la voiture
Et si on veut continuer dans les statistiques, un humain a plus de risques de mourir noyé ou d'être frappé par la foudre, que de perdre la vie dans un accident d'avion.
Alors, que se passe-t-il pendant cette phase ? Anthony Brickhouse : Généralement au décollage et à l'atterrissage, l'avion vole bas, et lentement. Et quand des problèmes surviennent, les pilotes ont peu de temps pour réagir.
En aéronautique, le palonnier est l'une des principales commandes de vol située dans le poste de pilotage d'un avion ou d'un hélicoptère. Il est constitué de deux pédales permettant au pilote d'actionner la gouverne de direction d'un avion, d'un planeur, ou le rotor anticouple d'un hélicoptère.
Le train d'atterrissage sert à assurer les évolutions d'un avion au sol jusqu'à son décollage, mais aussi l'amortissement lors de l'impact d'atterrissage. Il comporte un système de freinage permettant l'arrêt de l'avion sur une distance déterminée.
La pression élevée est le résultat de la force de tout l'air qui se trouve au-dessus. Lorsque tu t'éloignes de la Terre, il y a moins d'air qui exerce une pression vers le bas, donc la pression diminue. À la limite de l'espace, la pression atmosphérique est presque nulle.
À bord d'un avion commercial, deux pilotes sont généralement aux commandes : le commandant de bord (CDB) et l'officier pilote de ligne (OPL, aussi appelé copilote). Ils forment le personnel navigant technique (PNT). Le CDB, comme son statut l'indique, est le chef du vol.
Pour résumé, la Terre ne peut subitement tourner dans l'autre sens à cause de la conservation du moment cinétique.