Une application simple du théorème de Baire montre que l'ensemble des fonctions monotones quelque part est maigre dans l'ensemble des fonctions continues sur [a,b], par exemple.
Soit une fonction continue et strictement monotone sur un intervalle. Si a et b désignent les extrémités de l'intervalle (c'est-à-dire a ou b sont des réels ou sont les symboles − ∞ ou + ∞ ) alors les extrémités de l'intervalle sont lim x → a f ( a ) et lim x → b f ( x ) (ces limites pouvant être elles-mêmes infinies).
Une fonction est monotone lorsqu'elle est croissante sur I ou lorsqu'elle est décroissante sur I . Étudier le sens de variation d'une fonction, c'est découper son ensemble de définition en intervalles sur lesquels la fonction est croissante ou décroissante.
Si le signe de la différence est positif ou nul pour tout n, la suite est croissante. Si le signe de la différence est négatif ou nul pour tout n, la suite est décroissante. Si la différence change de signe en fonction de la valeur de n, la suite n'est pas monotone.
Autrement dit, on voit graphiquement qu'une fonction est continue en un point x0 si la courbe passe par le point M0(x0 ; ƒ(x0)) sans coupure. Sinon, la fonction est discontinue en ce point. Soit la fonction f définie sur par f(x) = x2+ 3x + 4 si x > 1 ; f(x) = 5 + 3x si x ≤ 1.
Pour démontrer qu'on ne peut pas prolonger une fonction f en un point a, on peut trouver deux suites (un) et (vn) qui tendent vers a telles que (f(un)) ( f ( u n ) ) et (f(vn)) ( f ( v n ) ) admettent des limites différentes (voir cet exercice).
Définition intuitive : Une fonction est continue sur un intervalle, si sa courbe représentative peut se tracer sans lever le crayon. Étudier graphiquement la continuité des fonctions et définies et représentées ci-dessous sur l'intervalle [−2 ; 2].
On dit qu'une fonction f est monotone ssi elle est soit croissante soit décroissante. La fonction carré x ↦→ x2 n'est pas monotone : en effet, bien qu'elle soit ”tantôt croissante, tantôt décroissante”, elle n'est ni croissante ni décroissante.
1. Qui est toujours sur le même ton, qui offre une grande uniformité de son, de rythme : Chant monotone. 2. Qui lasse par le manque de variété dans les intonations ou les inflexions : Acteur monotone.
5.3 Inverse d'une fonction monotone
Si on suppose que f ne s'annule jamais sur I, et qu'elle est de signe constant, alors la fonction inverse est monotone sur , de monotonie contraire à celle de f et de même signe.
En mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante.
(Mathématiques) Qualifie une fonction à une seule variable, qui n'est pas continue ou uniquement croissante ou décroissante dans un intervalle donné. Cette fonction est caractérisée par une courbe en forme de "U", elle est donc non-monotone.
Dans une relation monotone, les variables ont tendance à se déplacer dans la même direction relative, mais pas forcément à une vitesse constante. Dans une relation linéaire, les variables se déplacent dans la même direction, à une vitesse constante.
f (I) := {f (x)|x ∈ I}. Théor`eme Soit f une fonction continue et I un intervalle contenu dans DDf . Alors f (I) est un intervalle. Autrement dit, l'image d'un intervalle par une fonction continue est un intervalle.
Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l'équation ƒ(x) = k admet une unique solution dans [a ; b].
Adjectif. Qui est toujours sur le même ton, qui n'est pas varié dans ses intonations ou dans ses inflexions. (Par extension) Qualifie un orateur dont le débit n'est pas varié. (Sens figuré) Qualifie des choses qui sont uniformes, qui manquent de variété.
Qui est toujours sur le même ton, ou dont le ton est peu varié. ➙ monocorde.
La monotone de chaleur est la courbe représentant le nombre d'heures durant lesquelles la puissance thermique est appelée au cours de l'année et ce pour chaque puissance appelée comprise entre un arrêt du chauffage (puissance nulle) et la puissance thermique maximale appelée.
Ainsi la fonction monotone définie par f : [ 0 , 1 ] → R , ∀ x ∈ [ 0 , 1 ] f ( x ) = 0 et f ( 1 ) = 1 est intégrable et son intégrale vaut de façon évidente .
Soient I un intervalle de R, et f : I −→ R une fonction continue. Supposons que l'intervalle I est stable par f. Notons (un) la suite définie par la donnée de u0 ∈ I et la relation de récurrence un+1 = f(un). Si la fonction f est strictement croissante sur I, alors la suite (un) est monotone.
Manque lassant de variété. Synonyme : fadeur, grisaille, impersonnalité, platitude, prosaïsme, tristesse, uniformité. – Familier : ronron, train-train.
On détermine la limite d'une fonction définie par morceaux à la frontière entre les deux morceaux. Ici les limites à droite et à gauche ne sont pas égales, et donc la limite cherchée n'existe pas.
Dérivabilité et continuité
La dérivabilité d'une fonction ne se cherche donc qu'en des points où la fonction est déjà continue. La réciproque de cette affirmation est fausse : il existe des fonctions continues en a mais non dérivables en ce point.
Notion de continuité
On dit qu'une fonction f est continue en a si lim(x→a) f(x)= f(a). On dit qu'une fonction f est continue sur un intervalle I si pour tout x_0∈I lim(x→x0)f(x) = f(x0). Une fonction continue est une fonction que l'on peut dessiner « sans lever le crayon ».