Dans le cadre de la physique usuelle, il est donc impossible de créer des trous noirs sur Terre. Mais avec le lancement du LHC, le plus grand accélérateur de particules existant à ce jour, la réponse n'est plus si certaine.
D'après les chercheurs, pour qu'une personne puisse entrer dans un trou noir sans être transformée en bouillie, il faut que la distance radiale de celui-ci soit relativement élevée. Les trous noirs qui ont la masse de notre Soleil ne sont pas de bons candidats pour ce genre d'exploration.
Le premier trou noir fut détecté en 1971 dans la constellation du Cygne. En 1974, Bruce Balick et Robert L. Brown détectent un astre extrêmement massif au centre de la Voie Lactée qu'ils baptisent Sagittarius A*. Il a fallu attendre la fin des années 1990 pour que sa nature de trou noir supermassif soit prouvée.
Il s'appelle Chuck Clark et il est l'un des meilleurs cosmonautes de la Nasa, l'organisme responsable de la recherche spatiale aux Etats-Unis. Dans 5 ans, cet Américain de 32 ans va vivre une aventure incroyable et très risquée : il s'est porté volontaire pour être le 1er homme à entrer à l'intérieur d'un trou noir !
On estime ainsi que les trous noirs résidus stellaires commenceront à s'évaporer dans cent milliards de milliards d'années et les trous noirs supermassifs dans un milliards de milliards de milliards de milliards d'années.
De fait, un trou noir comporte plusieurs couches. On trouve d'abord l'horizon des événements, connu sous le nom de point de non-retour, puis le disque d'accrétion. Il s'agit d'un énorme disque de poussière et de gaz tourbillonnant autour du trou noir.
Les trous noirs jouent aujourd'hui un rôle crucial non seulement en astrophysique mais aussi en physique des particules, et en particulier dans les théories essayant d'unifier la relativité générale et la physique quantique.
Emplacement. Les trous noirs se forment à la fin de la vie d'une grosse étoile, alors ils se trouvent çà et là dans les galaxies. La plupart des galaxies ont un trou noir supermassif en leur centre, comme c'est le cas pour la nôtre, la Voie lactée.
Il se trouve que les trous noirs ne sont pas si effrayants. Ils n'ont aucun pouvoir particulier de « succion » qui leur permettrait d'avaler de la matière. Leur seule force d'attraction vient de la bonne vieille gravité, cette même force qui maintient la Lune en orbite et qui nous colle à la Terre.
Grâce au télescope Hubble, un trou noir vient d'être découvert à quelques encablures de notre planète après douze années de recherche. Situé à seulement 6.000 années-lumière de la Terre, il a été repéré au cœur de Messier 4, un amas globulaire dans la constellation du Scorpion.
Une horloge avancerait à un rythme plus lent. En quelque sorte, donc, les trous noirs ralentissent le temps. Cet effet est tellement important que, si notre observateur lance un objet dans la direction du trou noir, il ne le verra jamais pénétrer à l'intérieur du trou noir.
Un trou blanc, que l'on appelle aussi fontaine blanche, serait, en quelque sorte, le contraire d'un trou noir : si un trou noir est un endroit de l'espace où la matière est attirée, et disparaît, un trou blanc, serait, au contraire, un endroit où la matière « apparaîtrait », et d'où elle jaillirait, un peu à la manière ...
Étonnamment, ils ne le sont pas! À l'intérieur des trous noirs et autour d'eux, le champ gravitationnel est tellement puissant que rien ne parvient à s'échapper, ni même la lumière. Cela signifie que les trous noirs n'émettent aucune onde lumineuse et n'ont donc aucune couleur.
Cela peut sembler effrayant, mais ce n'est pas le cas. Vous n'avez pas à craindre les trous noirs. Plus de 100 millions de trous noirs errent probablement dans notre galaxie à eux seuls, et ce sont des objets fascinants dans le cosmos.
Ces nouveaux trous de ver décrivent l'intrication quantique entre les deux phases du rayonnement. Finalement, ces trous de ver sont virtuels et il n'est pas question de les traverser, mais ils jouent un rôle important dans la description du phénomène d'évaporation des trous noirs.
Généralement, les trous noirs sont considérés comme sphériques. Et si un corps massif non sphérique venait à s'effondrer, quel serait le résultat ?
Au centre d'un trou noir se situe une région dans laquelle le champ gravitationnel et certaines distorsions de l'espace-temps (on parle plutôt de courbure de l'espace-temps) divergent à l'infini, quel que soit le changement de coordonnées. Cette région s'appelle une singularité gravitationnelle.
Après 5 milliards d'années d'existence, notre planète sera finalement absorbée par le Soleil, devenu géant, qui détruira toute trace de présence humaine et dispersera molécules et atomes de l'ancienne Terre à travers l'espace.
Quels gestes peuvent être faits pour éviter le blackout en cas de pénurie d'électricité? Il est recommandé de diminuer la consommation d'énergie, en évitant d'utiliser les électros les plus grands et les plus puissants entre 17h et 20h, et en préparant un kit d'urgence en cas de coupure de courant.
Un trou blanc (ou fontaine blanche) est un objet hypothétique qui comme son nom l'indique est l'opposé du trou noir. En effet, tandis qu'en théorie rien ne peut s'échapper d'un trou noir, d'après les cosmologistes, rien ne peut pénétrer dans un trou blanc. De la matière et de l'énergie en sont éjectés en permanence.
Le principe d'un trou noir est que sa force gravitationnelle est tellement forte que rien ne peut en ressortir, même pas les rayonnements électromagnétiques (lumière visible, rayons X, gamma, etc.) qui se déplacent dans le vide à la vitesse de la lumière.
Ces trous se forment lorsque des étoiles massives arrivent en fin de vie et s'effondrent sous l'effet de leur propre gravité, détaille Sciences et Avenir. Ici, VFTS 243 est qualifié de "dormant" car il n'émet pas de rayons X, qui permettent normalement aux humains de détecter cet objet céleste.
Le terme « trou noir » a été inventé par le physicien américain John Wheeler, en 1967, pour décrire une concentration de masse-énergie qui s'est effondrée gravitationnellement sous sa propre force d'attraction et qui est devenue si compacte que même les photons ne peuvent se soustraire à cette force gravitationnelle.
Un trou noir est un objet céleste qui piège toute forme de rayonnement. Cela est dû à sa compacité, c'est-à-dire à son rapport masse/taille très élevé, qui crée un champ gravitationnel si intense qu'aucun rayonnement ne peut s'en échapper. Cela est aussi valable pour la matière.