Un atome contient un noyau situé en son centre et des électrons qui "tournent autour" du noyau. Le noyau contient des nucléons, c'est à dire des protons et des neutrons.
L'atome est composé d'un noyau, formé par des nucléons. Les nucléons sont composés de protons et de neutrons. Les électrons, quant à eux, gravitent autour du noyau. L'atome est constitué d'un certain nombre d'électrons, qui se trouvent donc autour du noyau, le noyau représentant pratiquement toute la masse de l'atome.
On retrouve dans le noyau de l'atome deux types de particules : le proton et le neutron. Autour du noyau tournent les électrons.
Comme les protons et les neutrons sont dans le noyau, on les appelle aussi les NUCLÉONS (noyau et nucléon sont deux mots ayant la même racine).
Les électrons sont attirés par le noyau et donc restent avec lui, pour former les atomes. Donc c'est la force électrique qui explique pourquoi les atomes existent ! On dit d'ailleurs que les atomes sont neutres. En effet, si on prend un noyau avec un certain nombre de protons, il attire les électrons.
Champs électrique et magnétique
Un électron engendre un champ électrique qui exerce une force attractive sur une particule positivement chargée, comme un proton, et une force répulsive sur une particule négative. La valeur de cette force est donnée par la loi de Coulomb.
Pour pouvoir arracher un électron d'un atome de sodium, un autre électron incident doit être accéléré à travers une différence de potentiel électrique de 5,14 V et alors une différence d'énergie potentielle électrostatique de 5,14 eV.
Le neutron est une particule subatomique de charge électrique nulle. Les neutrons sont présents dans le noyau des atomes, liés avec des protons par l'interaction forte. Alors que le nombre de protons d'un noyau détermine son élément chimique, le nombre de neutrons détermine son isotope.
En 1808, John Dalton reprend l'idée d'atomes afin d'expliquer les lois chimiques. Dans sa théorie atomique, il fait l'hypothèse que les particules d'un corps simple sont semblables entre elles, mais différentes lorsque l'on passe d'un corps à un autre.
Les électrons ont une charge électrique négative. Les protons ont une charge électrique positive, de même valeur que celle de l'électron. Les neutrons n'ont pas de charge électrique, ils sont neutres. Le nombre de neutrons dans un atome est variable, en général il est proche du nombre de protons.
L'électron dans l'atome
Un atome étant toujours électriquement neutre, la charge négative des électrons compense la charge électrique positive portée par les protons du noyau. Par conséquent le nombre d'électrons d'un atome correspond aussi au nombre de protons, indiqué par le numéro atomique Z de l'atome.
Aujourd'hui, c'est l'oganesson, de numéro atomique 118, qui est officiellement l'élément chimique le plus lourd du tableau périodique. Synthétisé en 2002, il est très instable et se désintègre en moins d'une milliseconde.
Mais alors, pourquoi l'électron ne tombe-t-il pas sur le noyau? Parce que l'électron est en mouvement: la force centrifuge qui en résulte compense exactement la force d'attraction électrique. Au delà de cette orbite, l'électron n'est plus lié à l'atome: il est libre.
Les électrons « mobiles » ou « libres » proviennent des atomes des métaux. Ils quittent leur atome et se déplacent librement dans le métal. Ce déplacement d'électrons assurent la conduction du courant électrique dans les métaux.
Un atome est un minuscule morceau de matière, une sorte de « brique » qui la constitue. Lorsque plusieurs atomes sont assemblés entre eux, ils peuvent former des molécules. Les atomes sont partout dans l'environnement, ce sont eux qui constituent tout ce qui nous entoure : l'air, l'eau, la terre, les matériaux...
Pendant longtemps, les scientifiques ont pensé que l'atome était la plus petite particule qui existait dans l'Univers. On sait maintenant qu'il y a des particules encore plus petites et indivisibles (comme le neutrino) : les particules élémentaires.
Un atome contient un noyau situé en son centre et des électrons qui "tournent autour" du noyau. Le noyau contient des nucléons, c'est à dire des protons et des neutrons. Les électrons ont une charge électrique négative. Les protons ont une charge électrique positive, de même valeur que celle de l'électron.
Par définition, on ne peut pas voir un atome, ni à l'œil nu, ni avec un microscope optique, et ce pour une raison très simple : la taille des atomes est bien inférieure aux longueurs d'onde de la lumière visible.
Le diamètre d'un atome est voisin de 10 exposant -8 cm ou encore 10 exposant -10 m. Celui d'un noyau est voisin de 10 exposant -15 m.
Le nombre de protons dans le noyau - ou numéro atomique - permet de différencier les éléments chimiques entre eux. Chaque élément possède un nombre unique de protons. Par exemple, il y a six protons dans le carbone; pour cette raison, son numéro atomique est 6 dans le tableau périodique des éléments.
Les électrons se déplacent autour du noyau. Entre le noyau et les électrons, il y a du vide, beaucoup de vide ! C'est pour cela qu'on dit que la matière est lacunaire. Ce modèle d'atome date de 1932 avec la découverte du neutron qui s'est ajouté aux connaissances apportées en 1911 par Ernest Rutherford.
Conçu vers la fin du XIXe siècle, le tube cathodique permit à Joseph John Thomson de découvrir l'électron, cette particule qui compose l'atome avec le neutron et le proton. Retour en vidéo sur cette découverte qui bouleversa le monde de la connaissance scientifique.
Le sélénium nécessite donc plus d'énergie que les autres métaux pour éjecter un électron de sa surface. Il a le travail de sortie le plus élevé.
En théorie quantique des champs, le photon est la particule médiatrice de l'interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement interagissent, cette interaction se traduit d'un point de vue quantique comme un échange de photons.