Avec les nombres naturels positifs (1, 2, 3, 4,…) et les nombres négatifs (… -4,-3,-2,-1), zéro est considéré comme un nombre entier. Le zéro est unique, car c'est le seul nombre entier qui n'est ni positif ni négatif. C'est également le seul nombre entier qui n'est ni premier ni composé.
On appelle ces nombres : les entiers naturels. Mais parfois, il n'y a rien à compter, le zéro est aussi un nombre entier naturel. C'est d'ailleurs le tout premier. L'ensemble des nombres entiers naturels se note ℕ (vient de l'italien « Naturale »).
Les nombres naturels, représentés par N , regroupent tous les nombres entiers compris entre 0 inclusivement et l'infini positif. On utilise parfois l'appellation nombres entiers naturels pour désigner cet ensemble. Les nombres naturels représentent tous les nombres entiers positifs.
En tant que nombre, zéro est un objet mathématique permettant d'exprimer une absence comme une quantité nulle : c'est le nombre d'éléments de l'ensemble vide. Il est le plus petit des entiers positifs ou nuls.
Les entiers naturels s'identifient aux entiers relatifs positifs (ou nuls), ainsi qu'aux nombres rationnels positifs (ou nuls) pouvant s'écrire sous la forme d'une fraction de dénominateur 1, et d'une manière plus générale aux réels positifs (ou nuls) de partie fractionnaire nulle.
Oui, 0 appartient à Q. En effet, 0 peut être écrit comme la fraction 0/1, où 0 est un entier et 1 est un entier non nul.
Par exemple, ℝ* est l'ensemble des nombres réels privé de 0. Tous les nombres de l'ensemble des entiers naturels ℕ appartiennent à l'ensemble des entiers relatifs ℤ. On dit que l'ensemble ℕ est inclus dans l'ensemble ℤ.
Un nombre premier est un entier naturel qui admet seulement deux diviseurs distincts entiers et positifs : 1 et lui-même. Selon cette définition, 0 et 1 ne sont pas des nombres premiers puisque 0 est divisible par tous les entiers positifs et 1 n'est divisible que par un seul entier positif.
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.
2) 0 a une infinité de diviseurs donc il n'est pas premier. 3) 1 n'a qu'un seul diviseur, qui est lui-même donc 1 n'est pas premier. 4) 2 a exactement 2 diviseurs : 1 et 2 donc 2 est le plus petit des nombres premiers.
Le vide n'existant pas selon Aristote, le nommer est sans intérêt voire faux. Ce sont les Babyloniens qui vont les premiers utiliser le zéro (vers le IIIe siècle après J. -C.), non pas comme un nombre ni même un chiffre, mais en tant que marqueur signifiant l'absence.
Les indéterminations de la forme 0 × ±∞ se ramènent à une indétermination de la forme 0/0 ou de la forme ∞/∞ en remarquant qu'une multiplication par 0 équivaut à une division par l'infini, ou qu'une multiplication par l'infini équivaut à une division par 0.
Le zéro barré ou le zéro pointé sont des conventions typographiques utilisées pour différencier le chiffre 0 de la lettre O, dont l'apparence est proche. Ce zéro représenté 0̸ est donc marqué d'une barre diagonale ou d'un point. Un zéro barré, un zéro pointé et un zéro ordinaire.
Le zéro n'est plus seulement un symbole utilisé pour marquer un vide, mais il devient un nombre à part entière. En 628, dans un traité d'astronomie appelé le Brahma Sphuta Siddhanta, Brahmagupta (598 ; 660) définira le zéro comme la soustraction d'un nombre par lui-même (a - a = 0).
Un nombre entier est positif ou nul, il s'écrit sans chiffre après la virgule et est supérieur ou égal à 0.
Nombres premiers
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers. Il en existe une infinité.
Elle recommande un certain nombre d'opérations pour calculer une puissance : pow définit 00 comme étant égal à 1. Si la puissance est un entier, le résultat est le même que pour la fonction pown, sinon le résultat est le même que pour powr (sauf certains cas exceptionnels). pown définit 00 comme étant égal à 1.
Par convention et pour assurer la continuité de cette fonction exponentielle de base 2, la puissance zéro de 2 est prise égale à 1, c'est-à-dire que 20 = 1.
Sur les développements décimaux positifs, Richman définit l'ordre lexicographique et une opération d'addition, remarquant que 0,999… < 1, tout simplement parce que 0 < 1 au rang des unités, mais pour tout développement infini x, on a 0,999… + x = 1 + x.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
2 est le seul nombre premier pair. C'est le plus petit nombre premier. Il existe une infinité de nombre premiers. Pour déterminer les nombres premiers inférieurs à 100, on peut utiliser le crible d'Eratosthène.
1 (nombre) — Wikipédia.
Le zéro a été inventé plusieurs fois. Tout d'abord par les Babyloniens pour montrer une absence dans l'écriture d'un nombre comme dans 102 où le zéro signifie l'absence de dizaines. On nomme ce zéro, le zéro de position. De façon indépendante, il a été réinventé par les Mayas, un peuple d'Amérique centrale.
On l'oppose par définition au nombre rationnel quotient de deux entiers dont l'écriture décimale peut être infinie mais dans ce cas nécessairement périodique. Par exemple, 2/7 = 0,285714285714285714… est un nombre rationnel.
Les 5 premiers nombres naturels sont 1,2,3,4,5 (selon la définition de Richard Dedekind).