Les tests paramétriques sont un peu plus puissants que les tests non paramétriques. En revanche, ils ne peuvent être utilisés que dans des conditions de normalité alors que les tests non paramétriques sont plus robustes et peuvent s'appliquer indépendamment de la distribution et de la taille de l'échantillon.
Par exemple, si vous voulez comparer une moyenne observée à une valeur théorique : Vous souhaitez comparer la moyenne des notes en mathématiques d'une classe à la moyenne du pays ? Dans ce cas nous allons utiliser un test paramétrique car nous pouvons supposer que les données suivent une distribution normale.
Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...); Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
Un test statistique permet d'évaluer à quel point les données vont à l'encontre d'une certaine hypothèse, l'hypothèse nulle aussi appelée H0. Sous H0, les données sont générées par le hasard. En d'autres termes, les processus contrôlés (manipulations expérimentales par exemple) n'ont pas d'influence sur les données.
Les tests non paramétriques sont donc utilisés lorsque le niveau d'échelle n'est pas métrique, que la distribution réelle des variables aléatoires n'est pas connue ou que l'échantillon est simplement trop petit pour supposer une distribution normale.
Les tests paramétriques sont des tests statistiques qui permettent de mesurer de degré d'association entre une variable quantitative et une variable catégorielle. Rappelons qu'une variable catégorielle est une variable qui différencie les individus en groupes.
Le test t est utilisé lorsque vous devez trouver la moyenne de la population entre deux groupes, tandis que lorsqu'il y a trois groupes ou plus, vous optez pour le test ANOVA. Le test t et l'ANOVA sont tous deux des méthodes statistiques permettant de tester une hypothèse.
Test unilatéral : test statistique pour lequel on prend comme hypothèse alternative l'existence d'une différence dont le sens est connu. Test bilatérale : test statistique pour lequel on prend, comme hypothèse alternative, l'existence d'une différence, dans un sens ou l'autre.
La science des statistiques est utile pour choisir objectivement un échantillon, faire des généralisations valables à partir des observations faites sur l'ensemble d'échantillons, mais aussi pour mesurer le degré d'incertitude, ou la fiabilité, des conclusions tirées.
Les tests paramétriques sont des tests dont l'échantillon que nous étudions suit une certaine loi (loi normale par exemple) ou vérifie un certain nombre d'hypothèses (même variance entre les deux échantillons donnés). Ils sont plus puissants mais nécessitent un certain nombre d'hypothèses à vérifier.
Les formulations pour l'hypoth`ese alternative H1 sont : 1. H0 : µ = µ0 (ou µ ≥ µ0) et 2. H0 : µ = µ0 (ou µ ≤ µ0) H1 : µ<µ0 H1 : µ>µ0 (unilatéral `a gauche).
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
L'idée. Si on souhaite comparer deux échantillons (i.i.d) gaussiens, il nous suffit en fait de comparer leurs paramètres : leur moyenne μ1 et μ2, et leur variance σ21 et σ22. La méthodologie la plus classique est d'effectuer de manière séquentielle : Un test d'égalité des variances.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Il s'agit du test de Kruskal-Wallis, mesure de l'association entre deux variables qualitatives. Le croisement de deux questions qualitatives produit un tableau que l'on désigne généralement par « tableau de contingence ».
Pour comparer deux moyennes, il faut habituellement employer le test «T» de Student, qui suppose la normalité des distributions et l'égalité des variances (test paramétrique), hypothèses invérifiables avec des effectifs faibles.
Niveau de signification
Si la valeur p calculée est inférieure à cette valeur, l'hypothèse nulle est rejetée, sinon elle est maintenue. En règle générale, on choisit un niveau de signification de 5 %. alpha < 0,01 : résultat très significatif. alpha < 0,05 : résultat significatif.
L'ANOVA univariée est généralement utilisée lorsque l'on a une seule variable indépendante, ou facteur, et que l'objectif est de vérifier si des variations, ou des niveaux différents de ce facteur ont un effet mesurable sur une variable dépendante.
En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'une différence existe. Valeur de p ≤ α : les différences entre certaines moyennes sont statistiquement significatives.
Le test F est utilisé dans le processus d'ANOVA pour tester la différence entre les moyennes ou l'égalité de la variance. L'ANOVA sépare la variabilité intra-échantillon de la variabilité inter-échantillons. Le test F est le rapport de l'erreur quadratique moyenne de ces deux échantillons.
L'estimation paramétrique repose aussi sur l'utilisation de données de projets passés. Cependant, contrairement à l'estimation analogique, cette méthode prend en compte les différences entre les projets passés et le projet actuel. Cette technique d'estimation repose sur des algorithmes.
Un test d'hypothèse (ou test statistique) est une démarche qui a pour but de fournir une règle de décision permettant, sur la base de résultats d'échantillon, de faire un choix entre deux hypothèses statistiques.