Il désigne l'ensemble des nombres entiers naturels (exemples : 0 1 2 3 7). Si l'on note ℕ*, cela signifie que l'on exclut le zéro. L'ensemble ℤ vient de l'allemand zahlen qui signifie compter. Ainsi défini par Dedekind, il recouvre l'ensemble des nombres entiers relatifs (exemples : -3 -1 0 1 5).
La construction formelle de cette ensemble est de nouveau obtenue par Dedekind (1831 − 1916) et la notation Z (du mot allemand Zahlen signifiant nombres) est popularisée par le mathématicien polycéphale Bourbaki (né en 1935).
L'ensemble des nombres entiers naturels est noté ℕ. Un nombre entier relatif est un nombre entier qui est positif ou négatif. L'ensemble des nombres entiers relatifs est noté ℤ. Un nombre décimal peut s'écrire avec un nombre fini de chiffres après la virgule.
Les nombres entiers, représentés par Z , regroupent tous les nombres entiers positifs et négatifs. On utilise fréquemment l'appellation nombres entiers relatifs. On peut voir l'ensemble des nombres entiers comme l'ensemble regroupant les nombres entiers naturels (N) et leurs opposés, les nombres entiers négatifs.
Georg Cantor est un mathématicien allemand, né le 3 mars 1845 à Saint-Pétersbourg (Empire russe) et mort le 6 janvier 1918 à Halle (Empire allemand). Il est connu pour être le créateur de la théorie des ensembles.
Sommaire. L'écriture algébrique d'un nombre complexe z est de la forme z = a+ib, avec a \in \mathbb{R} et b \in \mathbb{R}. La partie réelle de z est a et sa partie imaginaire est b.
Construction de l'ensemble Z
des entiers naturels, muni de la loi interne addition, est un monoïde commutatif ; donc notre but est simplement de rajouter un opposé (élément symétrique pour l'addition) pour chaque entier non nul. Il ne s'agit pas de rajouter brutalement un élément, il faut aussi définir l'addition.
Z est l'ensemble des nombres entiers relatifs, c'est à dire positifs, négatifs ou nuls. Z∗ (Z étoile) est l' ensemble des entiers relatifs sauf 0 (zéro). L'ensemble N est inclus dans l'ensemble Z (car tous les nombres entiers naturels font partie des entiers relatifs). Tout nombre dans N est aussi dans Z.
L'ensemble Q a été défini par Peano, il vient de l'italien quotiente (la fraction). Il définit l'ensemble des nombres rationnels (exemples : -3 -2,5 0 1,25 1/3 2,666). Le nombre peut être décimal limité (3/4 = 0,75) ou périodique (2/3 = 0,666). Z appartient à Q.
L'ensemble (ℤ, +, ×) n'est pas un corps car la plupart des éléments non nuls de ℤ ne sont pas inversibles : par exemple, il n'existe pas d'entier relatif n tel que 2n = 1 donc 2 n'est pas inversible.
L'ensemble des entiers naturels est l'ensemble N des entiers positifs ou nuls : 0;1;2;... L'ensemble des entiers relatifs est l'ensemble Z des entiers positifs ou nuls et des entiers négatifs : ...;−3;−2;−1;0;1;2;3;...
On note R∗ l'ensemble des nombres réels dont on a enlevé le nombre 0 . On note R+ l'ensemble des nombres réels positifs. On note R− l'ensemble des nombres réels négatifs.
Il fait partie de l'ensemble des nombres rationnels. √2 et π sont des exemples de nombres qui ne peuvent pas s'exprimer sous la forme ab et dont le développement décimal est infini et non-périodique. Il ne font donc pas partie de l'ensemble des nombres rationnels.
Un nombre entier relatif (ou simplement un entier) est un naturel muni d'un signe, positif (+) ou négatif (−). Deux nombres opposés sont deux nombres entiers qui ne diffèrent que par leur signe. L'ensemble des entiers se note Z, et celui des entiers non nuls se note Z0 ou Z∗.
« e » correspond en fait à un nombre qui vaut 2,71828182845… Ce nombre est un peu comme Pi, c'est une constante qui ne se finit jamais ! Donc e0 veut dire « e puissance 0 », ce qui vaut 1 car « n'importe quoi » puissance 0 vaut toujours 1 ! Attention !
Plusieurs justifications existent à ce fait et sont décrites dans cet article. En revanche, en analyse, l'expression f(t) peut ne pas avoir comme limite 1 lorsque f(t) et g(t) tendent vers 0, ce qui a conduit certains auteurs à laisser l'expression 00 comme non définie. Ce point de vue est toutefois très minoritaire.
L'autre manière, plus intuitive, de définir plus petit pourrait être : On dit qu'un ensemble A est plus petit qu'un ensemble B si tous les éléments de A sont éléments de B et si B possèdent au moins un élément qui n'est pas dans A.
L'ensemble des nombres rationnels est un corps commutatif, noté Q ou ℚ (baptisé ainsi par Peano en 1895 d'après l'initiale du mot italien quoziente, le quotient). De par sa définition : où ℤ est l'anneau des entiers relatifs.
L'ensemble des entiers relatifs Z est dénombrable. Pour cela, on considère f:Z→N f : Z → N telle que f(n)=2n f ( n ) = 2 n si n≥0 n ≥ 0 et f(n)=−(2n+1) f ( n ) = − ( 2 n + 1 ) si n<0 et on vérifie que f est une bijection de Z sur N.
s'écrit de manière unique sous la forme z = a + ib avec a et b réels. Exemples : 3+ 4i ; −2 − i ; i 3 sont des nombres complexes. Vocabulaire : - L'écriture a + ib d'un nombre complexe z est appelée la forme algébrique de z. - Le nombre a s'appelle la partie réelle et la nombre b s'appelle la partie imaginaire.
Définition : Soit un nombre complexe z = a + ib. On appelle module de z, le nombre réel positif, noté z , égal à a2 + b2 . M est un point d'affixe z. Alors le module de z est égal à la distance OM.
Par la diagonale d'un carré de côté 1, les savants grecs découvrent une longueur inexprimable, √2, dont nous savons aujourd'hui que son écriture comporte un nombre infini de décimales apparaissant de façon totalement aléatoire. Plus troublant encore, le nombre Pi qui fascine les mathématiciens depuis près de 4000 ans.
L'ensemble Q des nombres rationnels est dénombrable. En effet, un rationnel est représenté par une fraction, c'est-à-dire un couple constitué d'un entier relatif et d'un entier naturel non nul. En composant comme il faut les bijections établies précédemment, on obtient une bijection de N dans Z × N∗.