J. -C. , les mathématiciens grecs ont montré que la diagonale d'un carré et son côté étaient incommensurables, ce qui revient à dire que √2 est un irrationnel.
Écrivons √2 sous la forme d'une fraction irréductible (on peut imaginer que l'on simplifie ab si nécessaire). On obtient alors √2=pq où p et q sont des nombres entiers relatifs qui sont premiers entre eux. De l'égalité √2=pq, on déduit (en élevant au carré) que 2=p2q2 et donc que p2=2q2.
Où l'on démontre que racine de 2 ne peut pas être le quotient de deux entiers et que c'est donc un nombre irrationnel. Créé par Sal Khan.
Théorème — Un nombre réel est irrationnel si et seulement si son développement décimal propre n'est pas périodique. On démontre de même la caractérisation analogue via le développement dans n'importe quelle base (entière et supérieure ou égale à 2).
Preuve de l'irrationalité Supposons que √5 est rationnel et écrivons-le sous la forme d'une fraction irréductible m/n (c'est-à-dire que m et n sont premiers entre eux : PGCD(m, n) = 1). L'hypothèse √5 = m/n conduit à 5n2 = m2. Ainsi, 5 divise m2, donc divise m d'après le lemme d'Euclide.
Comme 3 est premier, 3 diviserait p d'o`u l'existence de p ∈ N tel que p = 3p . En reportant dans l'égalité (⋆), on aurait 3p 2 = q2 donc 3 diviserait q, ce qui contredit (p, q) premiers ente eux. La contradiction assure que √ 3 est irrationnel.
Contrairement à d'autres nombres comme 0 ou 2,49, √2 ne peut pas s'écrire comme une fraction (on dit qu'il est irrationnel) : il a un nombre infini de chiffres après la virgule. Une valeur approchée (à seulement 12 chiffres après la virgule) en est 1,414213562373.
La racine carrée de deux, notée √2 (ou parfois 21/2), est définie comme le seul nombre réel positif qui, lorsqu'il est multiplié par lui-même, donne le nombre 2, autrement dit √2 × √2 = 2. C'est un nombre irrationnel, dont une valeur approchée à 10–9 près est : √2 ≈ 1,414 213 562.
Par exemple, 2,59265… ne se termine pas, il s'agit donc d'un nombre irrationnel. Les nombres irrationnels sont des nombres réels qui ne peuvent pas être exprimés sous forme de fraction simple. Ils ne peuvent pas être énoncés sous la forme d'un rapport comme p/q, où p et q sont tous deux des entiers, et q ≠ 0.
il existe donc une paire p,q entiers relatifs tq sqrt(6) = p/q, avec p et q premiers entre eux. De ce dernier résultat on peut remarquer que p est pair, ce qui implique que q l'est aussi, ceci étant absurde parce que p et q sont premiers entre eux. Sqrt(6) est alors irrationnel.
Vrai : la racine carrée d'un nombre irrationnel positif est irrationnelle.
En d'autres termes, un nombre rationnel est positif si son numérateur et son dénominateur ont tous deux le même signe. Parmi les exemples de nombres rationnels positifs, citons 0,2, 6 et 2/5.
Cours. On s'intéresse à deux propositions A et B et on veut démontrer que A implique B (autrement dit, si A est vraie, alors B l'est aussi). Le raisonnement par l'absurde consiste à supposer que A est vraie et que B est fausse. On aboutit alors à une contradiction, ce qui entraîne que B doit être nécessairement vraie.
Proposition P : √ 2 est rationnel. Soit P est vraie soit P est vraie. Si P est vraie, il existe deux entiers naturels non nuls p et q tels que √ 2 = p q et p et q le plus petit possible. d'harmonie (2q p = 2q √ 2q = √ 2 ) .
Contraire à la raison. Synonyme : aberrant, absurde, antilogique, déraisonnable, illogique, incohérent, inconséquent.
La somme de deux nombres irrationnels peut être rationnelle ou irrationnelle. Cela dépend totalement des nombres considérés. Il en va de même pour les produits de deux irrationnels.
Définition : Un nombre réel qui n'est pas rationnel s'appelle un irréel. π et sont des irréels.
1) L'inverse d'un entier non nul est un décimal. Il faut comprendre : « L'inverse de n'importe quel entier non nul est un décimal », c'est-à- dire « Les inverses de tous les entiers non nuls sont des décimaux ».
Définition : Un nombre irrationnel est un nombre qui ne peut pas s'écrire à l'aide d'une fraction. Exemples : √2, √3 ou encore sont des nombres irrationnels. Ils ne peuvent pas s'écrire sous la forme d'une fraction.
√ 2 est irrationnel. provoqua un énorme scandale. Il fut tel que la légende rapporte qu' HIPPASE DE METAPONTE, disciple de PYTHAGORE, accusé d'avoir révélé cette découverte au monde (vers 530 avant notre ère), périt noyé, jeté à la mer par ses condisciples.
D'où vient son signe ? Le symbole radical est apparu la première fois en 1525 dans la matrice Coss par Christoff Rudolff (1499-1545). Il a employé √ pour les racines carrées.
Pi est un nombre irrationnel (c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique). Les premières sont : 3,14159265358979323846264338327950288419716939937510582. Dans la pratique, on utilise 3,14 mais il est souvent aisé de retenir 22 septièmes ou racine de 10 pour valeur approchée de Pi.
On peut évidemment poser la division et calculer `a la main, mais c'est un peu lourd. Voici une autre méthode qui utilise la calculatrice. les 11 premi`eres décimales de √ 2 : √ 2=1,414 213 562 37... et, finalement, √ 2=1,414 213 562 373 095 048 802...
Observons les premières puissances de 2 : 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16 384, 32 768, ... Pour retrouver deux chiffres déjà vus à la fin il faut continuer jusqu'à 222. Or 2 2= 4 : la période est 20.
Cette fonction agit à l'inverse de la fonction carré. Par exemple : Comme 2² vaut 4 alors vaut 2.