Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
Définition 2 : Un nombre naturel est premier s'il est plus grand que 1 et qu'il n'est divisible que par 1 et par lui-même. »
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers. Il en existe une infinité.
Contrairement au 12, certains nombres ne possèdent que 2 diviseurs, à savoir 1 et lui-même. Ce sont des nombres premiers. Exemple : 13 est un nombre premier, car il a pour diviseur 1 et 13.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Vers 200 avant J.C., Ératosthène apporta sa pierre à l'édifice dans l'étude des nombres premiers grâce à son crible permettant de trouver les nombres premiers. n + est un nombre premier. La théorie des nombres a occupé une place très importante dans les travaux d'Euler, qui était un calculateur hors pair.
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
Certains nombres de pions peuvent se mettre en forme carrée : 1=1×1, 4=2×2, 9=3×3, 16=4×4, 25=5×5 , 36=6×6, puis 49, 64, 81, 100, 121, etc. On les appelle des carrés parfaits ou simplement des carrés.
Un nombre premier est un entier naturel qu'on ne peut pas écrire comme le produit de deux autres entiers naturels plus petits. Par exemple, 23 est un nombre premier, mais 21 n'est pas un nombre premier car on peut l'écrire comme le produit de 7 par 3 (3 × 7 = 21), qui sont strictement inférieurs à 21.
Concernant 18, la réponse est : Non, 18 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 18) est la suivante : 1, 2, 3, 6, 9, 18. Pour que 18 soit un nombre premier, il aurait fallu que 18 ne soit divisible que par lui-même et par 1.
Le 7 décembre 2018, un record été battu, celui du plus grand nombre premier connu. 282 589 933 − 1, qui comporte près de 25 millions de chiffres en écriture décimale. On doit cette performance (la vérification est en cours) au Gimps, le Great Internet Mersenne Prime Search.
Zéro est un nombre pair. Déterminer la parité d'un nombre entier relatif c'est dire s'il est pair ou impair. La façon la plus simple de prouver que zéro est pair c'est de vérifier qu'il correspond à la définition : en effet, c'est un entier multiple de 2.
Les facteurs pour 17 sont tous les nombres compris entre −17 et 17 , qui divisent parfaitement 17 . Déterminez les paires de facteurs de 17 où x⋅y=17 x ⋅ y = 17 .
Le plus petit nombre entier n'existe pas. En effet, les nombres entiers sont les nombres entiers relatifs, qui incluent les nombres entiers négatifs, jusqu'à la limite de l'infini négatif. En revanche, le plus petit des nombres entiers naturels est 0, et le plus petit nombre entier naturel non nul est 1.
Concernant 17, la réponse est : oui, 17 est un nombre premier car il n'a que deux diviseurs distincts : 1 et lui-même (17). Par conséquent, 17 n'est multiple que de 1 et 17.
En effet, 0²=0 et c'est le seul nombre qui a pour carré 0. La dernière équation n'admet aucune solution. Il n'existe aucun carré négatif.
Le cube de 5 est 125, soit : 5³ = 5 × 5 × 5 = 125.
Concernant 45, la réponse est : Non, 45 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 45) est la suivante : 1, 3, 5, 9, 15, 45. Pour que 45 soit un nombre premier, il aurait fallu que 45 ne soit divisible que par lui-même et par 1.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 72) est la suivante : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72. Pour que 72 soit un nombre premier, il aurait fallu que 72 ne soit divisible que par lui-même et par 1.
Par conséquent : 63 est multiple de 1. 63 est multiple de 3. 63 est multiple de 7.
Voici la liste des 15 nombres premiers inférieurs à 50 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47. Le nombre 15 n'est pas un nombre premier, car il a plus de deux diviseurs : div (15) = {1, 3, 5, 15}. Le nombre 9 n'est pas un nombre premier, car il a plus de deux diviseurs : div (9) = {1, 3, 9}.
Un nombre premier est un nombre entier qui possède exactement deux diviseurs distincts : 1 et lui même. Exemples: 5 est premier car il n'est divisible que par 1 et 5 ( lui même). 12 n'est pas premier car il est divisible par 1, 2, 3, 4, 6 et 12 soit 6 diviseurs.
Par convention, le premier nombre carré est égal à 1, bien que 0 soit un carré parfait (0×0=0).