La base dix est très ancienne. Elle découle d'un choix naturel, dicté par le nombre des doigts des deux mains. Les Proto-indo-européens comptaient probablement en base dix.
Le système de représentation des nombres y est décimal. Pourquoi décimal ? Sans doute parce que l'être humain a dix doigts sur lesquels il peut matérialiser les opérations mathématiques fondamentales que sont l'addition et la soustraction.
2.4.
Pour réaliser cette conversion il suffit d'effectuer une succession de division par 2. Exemple : On souhaite convertir la valeur décimale 149(10) en un nombre binaire. La conversion du nombre 149(10) (en décimal) en binaire est donc : 1001 0101(2).
Certaines populations (Moyen-Orient, Roumanie, Égypte, etc.) connaissent ce système de longue date en comptant les phalanges de la main en omettant celles du pouce (qui est utilisé pour pointer les phalanges des autres doigts). Ce qui donne bien le chiffre douze, base de cette numération.
En base 10 (la numération décimale), on utilise donc 10 chiffres, soit de 0 à 9, tandis qu'en base 2 (la numération binaire), on n'utilise que 2 chiffres, c'est-à-dire le zéro (0) et le un (1).
En Occident, la plupart des gens ont appris à compter en base 10 avec les chiffres 0, 1, 2..., 9. Cependant, il existe d'autres systèmes de numération, les plus connus étant les systèmes binaire (0, 1) et hexadécimal (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).
Les chiffres de la base 10 sont 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. En base dix, pour décrire l'entier 4758, on peut écrire : 8 unités, 5 dizaines, 7 centaines et 4 milliers.
Chiffres utilisés dans une base et symboles
Une base b utilise b chiffres. Pour les bases jusqu'à dix inclus, on utilise les chiffres 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9. + 25 × 60 + 12 ; ce nombre est composé de trois chiffres : 1, 25 et 12.
Les Chiffres et les Nombres en Binaire de 0 à 1000 – : 0=0 en binaire, 1=1, 2=10, 3=11, 4=100, 5=101, 6=110, 7=111, 8=1000, 9=1001, 10=1010, …, 20=1 0100, …, 30=1 1110, …, 40=10 1000, …, 64=100 0000, …, 100=110 0100, 101=110 0101, …, 128=100 0000, …, 256=1 000 0000, …, 500=1 1111 0100, …, 512=10 0000 0000, …, 1000=11 ...
Les puissances de 2 sont les seuls nombres qui ne sont pas divisibles par un nombre impair autre que 1. Les chiffres des unités des puissances successives de 2 forment une suite périodique (2, 4, 8 et 6). Chaque puissance de 2 est une somme de coefficients binomiaux : Le nombre réel 0,12481632641282565121024…
C'est en effet l'Extrême-Orient qui invente l'écriture décimale positionnelle au IIIe siècle avant J. -C. Au nombre de dix, les chiffres correspondent à un système d'écriture décimale dite positionnelle, où un nombre est représenté dans un système de base 10 selon une notation positionnelle.
Elle découle d'un choix naturel, dicté par le nombre des doigts des deux mains. Les Proto-indo-européens comptaient probablement en base dix. Un système de notation décimale a été mis au point : au IIIe millénaire av.
Le système décimal, fondé sur les chiffres 0 à 9, est bien né en Inde. Il a été introduit à Bagdad, au début du IXe siècle, par le mathématicien Al-Khwarezmi. Ce savant ouzbek en a fait la promotion dans un ouvrage de vulgarisation intitulé Le Livre du calcul indien.
LA BASE 20
Elle a été utilisée chez les Mayas , Aztèques et les peuples celtes. Ils comptaient avec les doigts des pieds et des mains ( soit 20 doigts en tout). Ainsi, 40 était désigné par "deux vingts" ; 60 par "trois vingts" ; 80 par "quatre vingts" .
Le mathématicien et philosophe allemand Gottfried Leibniz (1646-1716) est l'un des premiers à étudier la numération binaire et à envisager de coder des informations par ce système.
La réponse est simple : les opérations avec dix chiffres (base 10) serait beaucoup trop lentes à effectuer par les processeurs d'un PC. C'est pourquoi, en n'utilisant que 2 chiffres (base 2), ils effectuent des calculs très rapidement et très simplement sur des nombres comportant uniquement des 0 et des 1.
À chaque fois que l'on ajoute un symbole '0' à droite d'un nombre, on va multiplier par la base (16). Ainsi, A signifie 10 en base 10, A0 correspond à 160 et A00 à 2560 (10 x 16 x 16).
Un système de numération est une méthode qui permet de représenter des nombres en ordonnant des symboles : les chiffres. Dans la vie courante, on utilise dix chiffres : 0,1, 2, ..., 9. C'est le système de numération en base 10 ou système décimal.
Divisez le nombre de départ par la plus grande puissance de 8. Dans le nombre 98, le 9 indique qu'il y a 9 dizaines. Ce chiffre de 9 a été obtenu en divisant 98 par 101, soit 10. En base 8, le principe est le même, il faut diviser le nombre à convertir par la plus forte puissance.
10 dizaines est égal à 100 unités ou à 1 centaine.