Si le signe de la différence est positif ou nul pour tout n, la suite est croissante. Si le signe de la différence est négatif ou nul pour tout n, la suite est décroissante. Si la différence change de signe en fonction de la valeur de n, la suite n'est pas monotone.
a) la suite (un) est croissante si pour tout n ∈ : un ⩽ un+1 ; b) la suite (un) est décroissante si pour tout n ∈ : un ⩾ un+1 ; c) la suite (un) est monotone si elle est croissante ou décroissante ; d) la suite (un) est constante si pour tout n ∈ : un+1 = un.
On dit que f est monotone sur I si elle est croissante sur I ou décroissante sur I. Si f est dérivable sur I et si, pour tout x de I, on a f (x) ≥ 0, alors f est croissante sur I. Si f est dérivable sur I et si, pour tout x de I, on a f (x) ≤ 0, alors f est decroissante sur I.
Chercher le signe de . Comparer le quotient et le réel 1 pour une suite à termes strictement positifs. Etudier, sur , le sens de variation de la fonction telle que . Conjecturer à l'aide des premiers termes du sens de variation de la suite puis justifier cette conjecture à l'aide d'un raisonnement par récurrence.
Étudier la monotonie d'une suite, c'est dire si la suite est croissante, décroissante, ou ni l'un ni l'autre. La suite (un) définie par avec u0 = 1 est une suite arithmétique de raison r = –3 donc décroissante sur . Soit (un) une suite géométrique de premier terme u0 positif de raison q. (un) est décroissante lorsque .
Son sens de monotonie est donné par le signe de u1−u0 u 1 − u 0 . Si u1≥u0 u 1 ≥ u 0 , alors (un) est croissante, sinon (un) est décroissante. On conclut alors souvent de l'une des 2 façons suivantes : On arrive à prouver que (un) est bornée (parce que I l'est par exemple).
La remarque de Fred te permet alors de savoir si elle est croissante ou non pour n assez grand. La suite est monotone à partir d un certain rang p lorsque le quotient up+1up u p + 1 u p dépasse une certaine valeur.
En mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante.
1. Uniformité de ton, d'intonation, d'inflexion : Monotonie de la voix. 2. Manque lassant de variété, de diversité : La monotonie d'un paysage.
On peut trouver la raison en soustrayant un terme de la suite arithmétique au terme suivant. Par exemple, prendre la différence des deux premiers termes nous donne − 3 − 2 = − 5 . Par conséquent, la raison de cette suite arithmétique est − 5 . Comme la raison est négative, cette suite est donc décroissante.
Les fonctions constantes sont les seules fonctions simultanément croissantes et décroissantes. Toute fonction affine est monotone (strictement croissante si le taux d'accroissement est strictement positif, strictement décroissante si le taux d'accroissement est négatif).
5.3 Inverse d'une fonction monotone
Si on suppose que f ne s'annule jamais sur I, et qu'elle est de signe constant, alors la fonction inverse est monotone sur , de monotonie contraire à celle de f et de même signe.
La monotone de chaleur est la courbe représentant le nombre d'heures durant lesquelles la puissance thermique est appelée au cours de l'année et ce pour chaque puissance appelée comprise entre un arrêt du chauffage (puissance nulle) et la puissance thermique maximale appelée.
(un) est bien définie si ∀n, un+1 ≥ 0, c'est `a dire si un ≥ −1. Pour tout choix de u0 ∈ [−1, +∞[, on aura alors ∀n ≥ 1,un ≥ 0 (récurrence immédiate), et donc la suite sera bien définie.
− d'une relation qui permet de calculer à partir de chaque terme le terme suivant (On exprime un+1 en fonction de un pour tout entier naturel n). Cette relation est appelée relation de récurrence. Exemple Soit (un) la suite définie par u0 = 2 et pour tout entier naturel n par un+1 = −2un + 3. Calculer u1 et u2.
- Si la suite est décroissante nous avons ua ≥ ua+1 ≥ ua+2 ≥ ... ≥ un et elle est, de fait, majorée par son premier terme ua . - Si une suite est croissante ou si elle est décroissante, elle est dite monotone.
Qui est toujours sur le même ton, ou dont le ton est peu varié. ➙ monocorde.
Trop souvent, lorsque les couples éprouvent une certaine lassitude, ils mettent en cause la routine et les habitudes. Et c'est vrai que d'effectuer toujours les mêmes gestes, d'avoir le même déroulement de sa journée, les mêmes occupations, cela peut sembler très monotone et avoir une tonalité monocorde.
Méthode pour étudier le sens de variation d'une suite
Calculer et étudier le signe de u n + 1 − u n pour tout : Si pour tout , u n + 1 − u n ≥ 0 alors la suite est croissante. Si pour tout , u n + 1 − u n ≤ 0 alors la suite est décroissante.
Une suite est convergente si elle tend vers un nombre fini ; une suite est divergente si elle tend vers l'infini ou si elle n'a pas de limite.
Pour montrer que ( ) ne converge pas uniformément sur vers , il suffit de trouver une suite ( ) de points de telle que la suite ( f n ( x n ) − f ( x n ) ) ne tende pas vers 0 lorsque tend vers .
la suite (un) telle que un = n pour tout n; • la suite (un) telle que un = 2n pour tout n. lLa suite (un) telle que un = αn pour tout n, o`u α est un réel donné. Une suite est dite constante si il existe un réel x tel que un = x pour tout n.
Manque lassant de variété. Synonyme : fadeur, grisaille, impersonnalité, platitude, prosaïsme, tristesse, uniformité. – Familier : ronron, train-train.
Pour montrer qu'une fonction f(x) est croissante, il suffit de montrer f(x + a) > f(x) si a est strictement positif ou ce qui revient au même que f(x + a) - f(x) > 0 si a > 0. Avec f(x) = x3 on y arrive comme suit : (x+a)3−x3=x3+3ax2+3a2x+a3−x3.