La trigonométrie est ainsi le premier outil utilisé par les astronomes depuis l'Antiquité. Les formules trigonométriques permettent de mesurer la distance entre deux étoiles selon l'angle qu'elles forment entre elles. D'autres domaines de la vie courante font appel aux règles de trigonométrie.
Pour les non scientifiques, la trigonométrie est connue principalement pour ses applications aux problèmes de mesure, cependant elle est aussi souvent employée dans des matières insoupçonnées comme en théorie de la musique ou en théorie des nombres de manière encore plus technique.
Si on connaît les longueurs de deux côtés et que l'on doit calculer la longueur du troisième, on utilise le théorème de Pythagore. Si on connaît une longueur et une mesure d'angle, on peut calculer la longueur d'un autre côté en utilisant une des formules trigonométriques.
Pour utiliser les formules de trigonométrie, il faut se situer dans un triangle rectangle. Ces trois rapports ne dépendent que de la mesure de l'angle considéré. Le cosinus et le sinus d'un angle aigu sont toujours compris entre 0 et 1.
La loi des cosinus est une formule qui permet de trouver la mesure d'un côté ou d'un angle dans un triangle quelconque. Elle est donc valable pour tous les triangles.
La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente. Ceci explique la parenté entre la notion de tangente et le calcul différentiel.
Les rapports trigonométriques nous disent que le sinus de l'angle 𝜃 est égal au côté opposé sur l'hypoténuse. Le cosinus de l'angle 𝜃 est égal au côté adjacent sur l'hypoténuse. Et la tangente de l'angle 𝜃 est égal au côté opposé sur le côté adjacent. Une façon de s'en souvenir est d'utiliser l'acronyme SOHCAHTOA.
Aryabhata est le premier à voir la trigonométrie hors du cercle. Dès le XIIIe siècle, les arabes, tel que le perse Mohammed al Khwarizmi (780 ; 850) traduisent les ouvrages provenant d'Orient.
Les formules définissant le cosinus, le sinus et la tangente d'un angle aigu dans un triangle rectangle permettent de calculer des longueurs de côtés à partir de la mesure d'un des angles aigus et de la longueur d'un des côtés.
Branche des mathématiques, issue de l'astronomie, qui, en liaison avec la géométrie euclidienne, permet de calculer les mesures des côtés d'un triangle ou de ses angles, à partir de certaines d'entre elles. (On y utilise et étudie en particulier les fonctions circulaires et leurs réciproques.)
On retiendra la petite astuce mnémotechnique : SOHCAHTOA. Elle permet de retenir les trois formules : sinus = opposé / hypoténuse, cosinus = adjacent / hypoténuse et tangente = opposé / adjacent. Le cosinus, le sinus et la tangente d'un angle n'ont pas d'unité.
Il y aussi des formules trigonométriques utiles où les nombres complexes apparaissent, la formule d'Euler, e i θ = cos θ + i sin , et la formule de Moivre, θ + i sin θ ) n = cos n θ + i sin .
À la base du triangle, une question de solidité
Tout d'abord, pour résumer, le point qui revient le plus souvent est que le triangle est la forme géométrique la plus solide ! Avec les triangles, on forme des treillis qui sont utilisés sur les ponts mais aussi pour les immeubles, les toits, etc.
Science qui a pour objet de résoudre les triangles, c'est-à-dire d'en déterminer par le calcul les angles et les côtés en partant de certaines données numériques.
La loi des sinus permet de trouver la mesure d'un côté ou d'un angle dans un triangle quelconque. Pour ce faire, il faut connaitre la mesure d'un angle, de son côté opposé et d'un autre côté ou d'un autre angle.
L'astronome grec Hipparque est considéré par beaucoup comme le père de la trigonométrie. Au cours de sa vie, aux alentours de l'an 120 av. J. -C., il crée une table de cordes tirées du centre d'un cercle qui forment des angles dont il tire des formules trigonométriques.
Par exemple, il permet : de calculer la longueur de l'hypoténuse à partir des longueurs des deux autres côtés, de vérifier la présence d'un angle droit dans un triangle, à un GPS de calculer la distance qui sépare une voiture ou un téléphone de la ville de Limoges, par exemple, etc.
L'astronome et mathématicien indien Aryabhata (476-550), dans son ouvrage Arya-Siddhanta, définit pour la première fois le sinus (moderne) à partir de la relation entre la moitié d'un angle et la moitié d'une corde, tout en définissant également le cosinus, le contre-sinus (ou sinus verse), et l'inverse du sinus.
Le mot sinus est un mot latin signifiant courbe, pli, cavité. Il a donné en français les mots sein et sinueux.
Le sinus de l'un est égal au cosinus de l'autre et réciproquement. On va démontrer que le sinus d'un angle est égal au cosinus de son complémentaire.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
En géométrie, le sinus d'un angle dans un triangle rectangle est le rapport entre la longueur du côté opposé à cet angle et la longueur de l'hypoténuse. La notion s'étend aussi à tout angle géométrique (compris entre 0 et 180°). Dans cette acception, le sinus est un nombre compris entre 0 et 1.
Rapport entre le sinus et le cosinus d'un angle. Soit un triangle rectangle dont l'hypoténuse mesure 1 unité, ou un cercle trigonométrique dans lequel r = 1. Dans ce triangle rectangle, on a les relations : sin(θ)=y et cos(θ)=x. Ainsi, tan(θ)=sin(θ)cos(θ)=yx.
Pour trouver la mesure de l'angle aigu à partir d'un cosinus, appuyez sur la touche 2nd (ou shift) puis COS (qui devient Cos-1) (ou Acs, ou Arccos), entrez la valeur du cosinus, puis appuyez sur enter. Ceci est utilisable seulement avec la calculatrice scientifique. Voilà, c'est tout.
Le sinus de l'angle est le rapport des longueurs du côté opposé à cet angle et de l'hypoténuse. Le cosinus de l'angle est le rapport des longueurs du côté adjacent à cet angle et de l'hypoténuse. La tangente de l'angle est le rapport des longueurs du côtés opposé et adjacent à cet angle et de l'hypoténuse.