Réponses. Alors un Z-espace vectoriel, ça n'existe pas, car Z n'est pas un corps. On parle plutôt de Z-module, qui est défini tout pareil qu'un k-espace vectoriel (avec les mêmes axiomes) sauf qu'on remplace k par Z.
Pour démontrer qu'un ensemble n'est pas un sous-espace vectoriel, il suffit de trouver un contre-exemple : vérifiez d'abord si 0 appartient à l'ensemble : si ce n'est pas le cas, c'est terminé. Sinon, vérifiez si l'opposé d'un vecteur de l'ensemble est dans l'ensemble.
Pour démontrer que F est un sous-espace vectoriel de E , on applique la caractérisation des sous-espaces vectoriels, c'est-à-dire qu'on vérifie que 0E∈F 0 E ∈ F et que, pour tout couple (x,y)∈F2 ( x , y ) ∈ F 2 et tout scalaire λ∈K λ ∈ K , on a {x+y∈Fλx∈F. { x + y ∈ F λ x ∈ F .
Donc (Q,|. |) est un espace vectoriel normé de dimension finie.
Propriétés des espaces vectoriels de dimension finie
Toute famille libre de E a au plus n vecteurs et toute famille génératrice en a au moins n. Pour qu'une famille d'exactement n vecteurs soit une base, il suffit qu'elle soit libre ou génératrice : elle est alors les deux.
Autrement dit, une partie F de E est un sous-espace vectoriel si elle n'est pas vide, et est stable par combinaison linéaire. Exemples : {(x,y,z)∈R3; x+y−3z=0} { ( x , y , z ) ∈ R 3 ; x + y − 3 z = 0 } est un sous-espace vectoriel de R3 .
Un module est un espace vectoriel auquel on a remplacé le corps par un anneau. Toutes les propriétés de l'espace vectoriel sont respectés. La seule différence est que le corps K de l'espace vectoriel est un anneau A dans le cas d'un module.
Définition 4 Une famille F = { v1,..., vn} d'un espace vectoriel V sur un corps K est dite base de V lorsqu'elle est libre et génératrice. Par exemple la famille {(1, 1, 1), (1, 2, 3), (1, 2, 4)} est une base de R3.
Exemple. La famille (u_1=(1,0), u_2=(0,1)) \in \mathbb{R^2} est libre, car ces deux vecteurs sont non colinéaires. La dimension de l'espace vectoriel \mathbb{R^2} étant 2, alors la famille u_1, u_2 est génératrice de \mathbb{R^2} (elle est donc une base de \mathbb{R^2}).
La structure d'espace vectoriel a émergé au cours du XIXè siècle. C'est d'abord Grassmann qui, vers 1840, introduit la définition d'indépendance linéaire et de dimension. Puis c'est Peano, en 1888, qui formalise complètement la notion.
Définition 3 : base
Deux vecteurs forment une base du plan vectoriel si, et seulement si, ils NE sont PAS colinéaires.
En théorie des probabilités (mais également en théorie de la décision), l'espace des évènements élémentaires est appelé l'univers.
On dit que F est un sous-espace vectoriel de E, si c'est un espace vectoriel et que F ⊂ E. Exemple : R2 est un sous-espace vectoriel de R3. Pour montrer qu'un ensemble est un espace vectoriel, il suffit souvent de montrer que c'est un sous-espace vectoriel d'un espace vectoriel connu.
Cet ensemble est muni de façon canonique d'une structure d'espace tridimensionnel, vectoriel ou affine. On désigne encore cet espace par ℝ3. Dans tout autre espace tridimensionnel (affine et muni d'un repère affine ou vectoriel et muni d'une base), ℝ3 est l'ensemble des coordonnées possibles.
Somme directe d'une famille de sous-espaces vectoriels
On dit que cette famille est en somme directe si tout vecteur u de la somme ∑i∈I Fi se décompose de façon unique sous la forme u = ∑i∈I ui avec ui ∈ Fi presque tous nuls ( c. -à-d.
L'espace vectoriel R 3 a pour dimension 3 . La partie { u , v , w } contient exactement trois vecteurs, aussi, pour démontrer que ( u , v , w ) est une base de R 3 , il suffit de démontrer que la partie { u , v , w } est une partie libre. Le triplet ( 0 , 0 , 0 ) est l'unique solution du système ( S ) .
En algèbre linéaire, une famille génératrice est une famille de vecteurs d'un espace vectoriel dont les combinaisons linéaires permettent de construire tous les autres vecteurs de l'espace. d'éléments de E (vecteurs) est dite génératrice de E si : . Si en plus la famille est libre, alors c'est une base de E.
Si on enlève un vecteur à une famille libre, alors elle ne peut plus être génératrice. En effet, le vecteur que l'on vient d'enlever n'est pas combinaison linéaire des autres, donc il n'est pas dans l'espace engendré par les autres.
Définitions. On apelle vecteur un segment de droite orienté noté . A est l'origine du vecteur et B son extrémité. On distingue trois types de vecteurs: vecteurs libres, glissants et liés.
Soit H un sous-espace vectoriel d'un espace vectoriel E de dimension finie. (1) H est un hyperplan si et seulement si c'est le noyau d'une forme linéaire non nulle. (2) Si H = Ker(ϕ) = Ker(ψ), alors il existe λ ∈ R∗ tel que ϕ = λψ.
L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Montrons que Kerf est un sous-espace vectoriel. On a f(0) = 0 donc 0 ∈ Kerf et Kerf = ∅. Soit u, u ∈ Kerf et λ ∈ K. Par définition f(u) = 0 et f(u ) = 0, donc f(u + λu ) = f(u) + λf(u ) = 0, ce qui implique que u + λu ∈ Kerf.
Vect(A) est donc l'intersection de tous les sous-espaces vectoriels de E contenant A. Vect(A) est une partie de E non vide (même lorsque A est l'ensemble vide) car le vecteur nul 0E, en tant que somme vide, est combinaison linéaire d'éléments de A.
En ancien et moyen français, le mot espace était indifféremment masculin ou féminin. De nos jours, il est masculin : l'espace infini, un espace bien aménagé, un espace exigu, etc. Il subsiste toutefois une exception.