Quand Dit-on que deux vecteurs sont parallèles ?

Interrogée par: Joséphine Lebon  |  Dernière mise à jour: 27. Januar 2024
Notation: 4.1 sur 5 (49 évaluations)

Un vecteur dans l'espace est défini par deux quantités : sa norme et sa direction (sens). Une relation spéciale se forme entre deux ou plusieurs vecteurs lorsqu'ils ont le même sens ou de sens opposés. Lorsque c'est le cas, on dit que les vecteurs sont parallèles.

Quelle est la différence entre colinéaire et parallèle ?

Les droites (d) et (d') sont parallèles si et seulement si et sont colinéaires, c'est-à-dire si et seulement si le déterminant de et de est nul. Les droites (d) et (d') sont sécantes si et seulement si et ne sont pas colinéaires, c'est-à-dire si et seulement si le déterminant de et de n'est pas nul.

Quand Peut-on dire que deux vecteurs sont colinéaires ?

Des vecteurs colinéaires​, aussi appelés linéairement dépendants, sont des vecteurs qui ont la même direction. Dans un langage plus commun, des vecteurs colinéaires sont formés de droites qui sont parallèles.

Comment savoir si deux vecteurs ne sont pas colinéaires ?

Exemples : a) ( 2 ; – 3 ) et ( 10 ; – 15 ) sont colinéaires en effet 10 = 2 x 5 et –15 = –3 x 5 donc = 5 . c) (4 ; 5 ) et (8 ; –10 ) ne sont pas colinéaires en effet : ≠ 0 et ≠ 0 et s'il existe tel que = , alors 8 = x 4 donc = 2 et -10 = x 5 donc = -2 .

Comment justifier que deux vecteurs sont colinéaires ?

Vecteurs colinéaires
  1. Deux vecteurs non nuls et sont colinéaires s'il existe un nombre réel k tel que . Autrement dit, deux vecteurs sont colinéaires si l'un est un multiple de l'autre.
  2. Puisque le vecteur est non nul, alors le nombre réel k est forcément différent de 0. Le vecteur nul est colinéaire à tous les vecteurs.

Démontrer que deux vecteurs sont colinéaires - Seconde

Trouvé 19 questions connexes

Comment savoir si colinéaires ?

Deux vecteurs sont colinéaires s'ils ont la même direction.

Comment calculer le produit scalaire de deux vecteurs parallèles ?

Si les vecteurs sont parallèles et de même sens, leur produit scalaire est égal au produit de leurs longueurs. En effet : α = 0 et cos 0 = 1 . Si les vecteurs sont parallèles et de sens contraires, leur produit scalaire est égal à l'opposé du produit de leurs longueurs. En effet : α = π et cos π = - 1 .

Comment savoir si deux vecteurs ont le même sens ?

Pour que deux vecteurs soient égaux, il faut qu'ils aient même norme, même direction et même sens.

Comment démontrer que deux vecteurs sont égaux dans un parallélogramme ?

Deux vecteurs A B → et C D → sont égaux si et seulement si :
  1. les droites (AB) et (CD) sont parallèles,
  2. On va de A vers B et de C vers D en se déplaçant dans le même sens,
  3. les longueurs AB et CD sont égales.

Comment justifier que deux droites sont parallèles ?

Si deux droites parallèles coupées par une sécantes forment deux angles correspondants, alors ces angles sont de même mesure. La réciproque à cette règle est également vraie : Si deux angles correspondants de même mesure sont définis par deux droites et une sécante, alors ces deux droites sont parallèles.

Comment savoir si deux droites sont parallèles dans un repère ?

On rappelle que deux droites non parallèles à l'axe des ordonnées sont parallèles si et seulement si elles ont le même coefficient directeur. Si les deux droites sont parallèles à l'axe des ordonnées, alors elles sont parallèles.

Comment savoir si deux droites sont parallèles dans l'espace ?

Deux droites sont parallèles si et seulement si elles sont coplanaires et non sécantes (c'est-à-dire confondues ou n'ayant aucun point commun). Attention : Dans l'espace, 2 droites non sécantes ne sont pas forcément parallèles !

Est-ce que deux vecteurs égaux sont colinéaires ?

Avec une égalité vectorielle

On peut montrer que deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires en démontrant que \overrightarrow{u} = k \overrightarrow{v}.

Comment savoir si deux vecteurs sont colinéaires avec coordonnées ?

Soient u et v , deux vecteurs de coordonnées respectives (xy​) et (x′y′​). Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul.

Comment justifier que ABCD est un parallélogramme ?

Quelle est la nature du quadrilatère ABCD ? On peut dire que ABCD est un parallélogramme car ses diagonales [AC] et [BD] ont le même milieu I. De plus, ABCD est un rectangle car il a un angle droit en B.

Comment savoir si 3 vecteurs forment une base ?

L'espace vectoriel R 3 a pour dimension 3 . La partie { u , v , w } contient exactement trois vecteurs, aussi, pour démontrer que ( u , v , w ) est une base de R 3 , il suffit de démontrer que la partie { u , v , w } est une partie libre. Le triplet ( 0 , 0 , 0 ) est l'unique solution du système ( S ) .

Quelle est la différence entre le sens et la direction d'un vecteur ?

La direction, c'est la droite du vecteur, plus particulièrement son inclinaison. On peut avoir un vecteur horizontal, vertical, ou encore en diagonale. Le sens, c'est le bout de la flèche du vecteur.

Comment vérifier si deux vecteurs sont orthogonaux ?

Deux vecteurs sont orthogonaux si leur produit scalaire est nul. C'est évident quand on se souvient de la formule du cosinus (si le cosinus de deux vecteurs est nul, c'est que ceux-ci sont orthogonaux).

Quand le produit scalaire vaut 1 ?

Produit scalaire et vecteurs colinéaires

Si ⃗ AB et ⃗ CD sont deux vecteurs colinéaires non nuls, alors : 1er cas, vecteurs de même sens : ⃗ ⋅ C D ⃗ = A B × C D \vec {AB}\cdot \vec {CD}=AB\times CD AB ⋅CD =AB×CD.

Quand utiliser le produit scalaire ?

Le produit scalaire est parfois utilisé sous cette forme pour déterminer le travail d'une force lors d'un déplacement : le travail de la force F selon le trajet u est le produit scalaire des deux vecteurs. Dans la seconde illustration, ce travail est égal à –AB × AH.

Comment calculer les vecteurs U et V ?

On définit l'addition ou somme de deux vecteurs →u et →v, comme le vecteur dont les composantes sont obtenues par addition des composantes correspondantes des deux vecteurs →u et →v. On note →u+v le vecteur somme. →u+→v=(ux+vx,uy+vy). On peut donner une interprétation géométrique de cette opération.

Comment savoir si trois points sont alignés ?

Pour déterminer si trois points sont alignés, il existe plusieurs méthodes. Les points A, B et C sont alignés ⇔ (AB) et (AC) ont le même cœfficient directeur . A(3 ; 7), B(0 ; –2) et C(1 ; 1) sont-ils alignés ? Les deux cœfficients directeurs sont égaux à 3, donc A, B et C sont alignés.

C'est quoi le déterminant d'un vecteur ?

Le déterminant est l'une des techniques qui permet de savoir si deux vecteurs sont colinéaires. S'ils se sont, le déterminant est nul. Et réciproquement, si le déterminant est nul les vecteurs sont colinéaires.

C'est quoi des vecteurs coplanaires ?

Définition : Trois vecteurs sont coplanaires s'ils possèdent des représentants appartenant à un même plan.

Quels sont les trois types de vecteurs ?

Définitions. On apelle vecteur un segment de droite orienté noté . A est l'origine du vecteur et B son extrémité. On distingue trois types de vecteurs: vecteurs libres, glissants et liés.