Lorsqu'une application affine est croissante, sa représentation graphique est une droite « montante » de la gauche vers la droite. Lorsqu'une application affine est décroissante sa représentation graphique est une droite « descendante » de la gauche vers la droite.
La droite (d) représentant la fonction f définie par f(x) = ax + b a pour coefficient directeur a et pour ordonnée à l'origine b. Remarques : - Si le coefficient directeur est positif alors la droite « monte ». On dit que la fonction affine associée est croissante.
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
Soit f : x ↦→ mx + p une fonction affine, avec m 0. Si m > 0, alors f est strictement croissante. Si m < 0, alors f est strictement décroissante.
Une application f de E dans E' est dite affine si elle vérifie l'une des deux conditions équivalentes suivantes (donc les deux) : il existe une application linéaire. , un point O de E, et un point O' de E' tels que : f conserve les barycentres.
Une fonction f définie sur est une fonction affine si elle peut s'écrire sous la forme f(x) = ax + b avec a et b réels.
* Si une fonction est affine, alors sa représentation graphique est une droite (qui n'est pas parallèle à l'axe des ordonnées). * Réciproquement, si la représentation graphique d'une fonction est une droite (qui n'est pas parallèle à l'axe des ordonnées), alors cette fonction est affine.
On dit que f est une application affine s'il existe un point a de E et une application linéaire f de E dans F tels que, pour tout point x de E, on ait la formule : (1) f(x) = f(a) + f(−→ ax). Alors, pour tout point b de E, on a aussi : f(x) = f(b) + f( −→ bx).
Si f ^ { \prime } est strictement positive sur \text{I,} sauf pour un nombre fini de réels où elle s'annule, alors f est strictement croissante sur \text{I.} Si f ^ { \prime } est strictement négative sur \text{I,} sauf pour un nombre fini de réels où elle s'annule, alors f est strictement décroissante sur \text{I.}
On dit qu'une fonction f est strictement croissante ssi pour x et y dans le DD de f , si on a x < y, on a aussi f (x) < f (y). En langage plus formel, ça donne ∀x,y ∈ DD(f ),x < y ⇒ f (x) < f (y). La fonction cube x ↦→ x3 est strictement croissante, bien que sa dérivée s'annule (en zéro).
Pour montrer qu'une fonction f(x) est croissante, il suffit de montrer f(x + a) > f(x) si a est strictement positif ou ce qui revient au même que f(x + a) - f(x) > 0 si a > 0. Avec f(x) = x3 on y arrive comme suit : (x+a)3−x3=x3+3ax2+3a2x+a3−x3.
Une fonction est dite strictement croissante sur un intervalle de x si les valeurs de y ne font qu'augmenter. Une fonction est dite strictement décroissante sur un intervalle de x si les valeurs de y ne font que diminuer.
Une fonction f est décroissante sur un intervalle I lorsqu'elle inverse l'ordre des nombres sur cet intervalle. Autrement dit, quelque soient les réels et appartenant à I, si alors f ( a ) ≥ f ( b ) .
Une fonction affine est une fonction ayant pour structure ax + b dont l'inconnue X est un nombre réel et les données a et b, des nombres relatifs donnés. Le but étant alors de calculer l'inconnue X. La fonction affine peut être représentée par un graphique et notamment une ligne droite.
Une fonction affine est une fonction qui, à tout nombre x, associe le nombre ax + b (a et b étant des nombres quelconques donnés). Remarque : une fonction linéaire est une fonction affine particulière. Dans ce cas : b = 0. On a f(–5) = 5 × (–5) – 3 = –28 .
Détermination du coefficient directeur de la droite : Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d.
si f ' est positive sur I la fonction est croissante sur I. si f ' est négative sur I la fonction est décroissante sur I. Remarques : pour le vocabulaire mathématique, "positive" signifie "positive ou nulle" (et "négative" veut dire "négative ou nulle").
f est convexe sur I si et seulement si sa dérivée f ' est croissante sur I. f est concave sur I si et seulement si sa dérivée f ' est décroissante sur I. Remarque : une fonction est croissante lorsque sa dérivée est positive. Il apparaît donc logique de s'intéresser au signe de la dérivée de f '(x).
Si elle est nulle, la courbe est localement rectiligne. Si la dérivée seconde s'annule et change de signe, on a un point d'inflexion, la courbure de la courbe s'inverse. , on ne peut pas conclure.
Propriétés : 1) Une fonction affine est représentée par une droite. 2) Une fonction linéaire est représentée par une droite passant par l'origine. 3) Une fonction constante est représentée par une droite parallèle à l'axe des abscisses. Une fonction affine est représentée par une droite.
Soient x1 et x2 deux nombres quelconques (x1 x2). L'accroissement des images par une fonction affine, est proportionnel à l'accroissement des nombres associés.
Une fonction affine est une fonction qui, à tout nombre x, associe le nombre ax + b (a et b étant des nombres quelconques donnés). Une fonction linéaire est une fonction affine qui traduit une situation de proportionnalité. Le nombre a est le coefficient de proportionnalité et le nombre b est nul (= 0).
Une fonction linéaire est une fonction affine particulière. En effet, f : x → ax peut s'écrire f : x → ax + 0 . f : x → ax + b est une fonction affine, g : x → ax est la fonction linéaire associée à f.
Une fonction affine est une fonction dont le graphique est une droite. Par conséquent, le graphique d'une fonction non affine n'est pas une droite. Un exemple de fonction non affine serait quelque chose comme 𝑦 est égal à 𝑥 au cube ou 𝑦 est égal à 𝑒 à la puissance 𝑥.
Si une fonction affine est une fonction constante, c'est-à-dire qu'elle est de la forme 𝑓 ( 𝑥 ) = 𝑏 , la représentation graphique de cette fonction est toujours une droite horizontale passant par le point ( 0 ; 𝑏 ) .