On dit que la loi est associative si pour tout ( x , y , z ) ∈ E 3 on a ( x ∗ y ) ∗ z = x ∗ ( y ∗ z ). On dit que la loi est commutative si pour tout ( x , y ) ∈ E 2 on a x ∗ y = y ∗ x . L'addition et la multiplication sont associatives et commutatives, mais le produit matriciel n'est pas commutatif.
2 – la loi ∗ est associative si pour tous les éléments x, y, z de E, on a ((x∗y)∗z = x∗(y∗z)). Exemples - • L'addition et la multiplication dans Z sont commutatives et associatives.
Pour que l'opération considérée soit effectivement une loi de composition interne, il faut qu'elle ait un sens quels que soient les deux éléments de l'ensemble choisis (on dit formellement que l'opération doit être définie partout).
a) Définition :
Soit un ensemble E muni d'une loi de composition interne additive On dit qu'un sous ensemble A de E est stable pour l'opposé si et seulement si pour tout élément x appartenant à A, -x appartient à A.
Si une opération * est définie dans un ensemble E, alors n est un élément neutre de l'opération * si et seulement si, quels que soient les éléments x de E, on a : x * n = x.
La soustraction et la division ne sont pas des opérations associatives.
L'associativité est une propriété d'opération qui permet de modifier l'ordre des calculs en regroupant des termes entre parenthèses sans modifier le résultat de l'opération. La commutativité est la propriété d'une opération qui permet de modifier l'ordre des termes sans changer le résultat.
Dans un anneau (A, +, ×), l'élément neutre 0 de + est absorbant pour ×. En effet, comme l'élément nul 0 est l'élément neutre de l'addition : 0 = 0 + 0. Ainsi, pour tout élément a de l'anneau A, a×0 = a×(0 + 0).
En mathématiques, plus précisément en arithmétique et en algèbre générale, la distributivité d'une opération par rapport à une autre est une généralisation de la propriété élémentaire : « le produit d'une somme est égal à la somme des produits ».
Définition 1.2 On dit que G est abélien (ou commutatif) si on a de plus xy = yx pour tous x, y de G. Dans ce cas on notera souvent + la loi, 0 le neutre, et −x le symétrique de x qu'on appelle alors l'opposé de x. Remarques : Si (G, +) est un groupe abélien, on peut noter x − y pour x + (−y) = (−x) + y.
un élément régulier est un élément par lequel on peut simplifier. un espace régulier est un espace topologique possédant une forte propriété de séparation. un langage régulier est un type de langage formel et une expression régulière est un moyen de le décrire.
si E ≠ F et G = F, la loi * : E × F → F est appelée loi de composition externe à gauche sur F ou loi de composition externe, et E est alors le domaine des opérateurs ; si E ≠ F et G = E, la loi * : E × F → E est appelée loi de composition externe à droite sur E de domaine F.
Si une lci admet un élément neutre, celui-ci est unique. Démonstration. Supposons qu'il existe deux éléments neutres e1 et e2. On a alors e1 ∗ e2 = e1 car e2 est un élément neutre, mais aussi e1 ∗ e2 = e2 car e1 est un élement neutre, donc e1 = e2.
Il existe une autre technique, c'est de montrer qu'un sous-ensemble d'un groupe est lui-même un groupe : c'est la notion de sous-groupe. Soit (G,⋆) un groupe. Une partie H ⊂ G est un sous-groupe de G si : – e ∈ H, – pour tout x, y ∈ H, on a x⋆ y ∈ H, – pour tout x ∈ H, on a x−1 ∈ H.
Remarque : Traditionnellement, et sans précision ou contexte particulier, une LCI est notée * comme ci-dessus ou F ("truc"). On peut également adopter un formalisme additif (la LCI est alors notée +) ou multiplicatif (× ou .). Soit E un ensemble muni d'une loi de composition interne *.
La Constitution de 1958 définit la loi comme le texte que vote le Parlement. Elle en délimite le domaine de compétences et la place sous le contrôle du Conseil constitutionnel.
Locution verbale. Placer de façon à être vu de tout le monde ou bien faire connaître clairement, manifestement.
Une expression littérale est un calcul contenant une ou plusieurs lettres qui désignent des nombres.
k × (a + b) = k × a + k × b. D'après ce qui précède, et en généralisant à la soustraction, on obtient les formules de distributivité suivantes : k × (a + b) = k × a + k × b ; écriture simplifiée : k(a + b) = ka + kb.
Les quatre opérations arithmétiques usuelles : l'addition, la soustraction, la multiplication et la division qui sont en principe les seules opérations autorisées aux jeux de chiffres comme au Compte est bon. Les calculatrices qui ne peuvent effectuer que ces quatre opérations élémentaires et aucune autre.
Pour n'importe quel nombre x, son inverse est donc x' tel que x x x' = 1. Or, zéro n'a pas d'inverse puisque n'importe quel chiffre multiplié par zéro donne toujours zéro. Par conséquent, la division par zéro est impossible et aboutirait à des contresens mathématiques.
La commutativité de la multiplication
Dire que la multiplication est commutative, cela veut dire que pour n'importe quels nombres a et b, on a toujours a × b = b × a a×b=b×a a×b=b×aa, ×, b, equals, b, ×, a.
Associativité : une opération est associative si on peut choisir les nombres à regrouper sans modifier le résultat de l'opération. L'addition et la multiplication sont associatives. Commutativité : une opération est commutative si on peut intervertir deux nombres sans modifier le résultat.
Les propriétés de l'addition : commutativité, associativité et élément neutre. Cette leçon porte sur les trois principales propriétés de l'addition. L'addition est commutative : On peut changer l'ordre des termes.
- La division n'est pas commutative. - La division de deux nombres égaux est égale à 1. - Le dividende est égal au produit du quotient et du diviseur, auquel on ajoute le reste. Cette propriété est très utile pour vérifier le résultat d'une division.