Soit la fonction f définie par f(x) = si x ≠ 0, et f(0) = 1. Donc la fonction f est continue en 0.
Soit f : D → R une fonction, et soit x0 ∈ D. a) La fonction f admet une limite en x0 (c'est-`a-dire, f est continue en x0) si et seulement si elle admet f(x0) comme limite `a droite et `a gauche en x0.
La fonction f est dite continue au point a si f(a) est une limite de f en ce point. Si F est séparé (ou même seulement T1) comme tout espace métrisable, il suffit pour cela qu'il existe une limite de f en ce point.
Par exemple, étudions la continuité de 𝑓 ( 𝑥 ) = | 𝑥 | en 𝑥 = 𝑎 . Premièrement, nous savons que si 𝑓 ( 0 ) = | 0 | = 0 , alors 𝑥 = 0 appartient à l'ensemble de définition de 𝑓 . Deuxièmement, nous devons déterminer l i m → | 𝑥 | .
Si f admet une limite finie en x0, notée l, on dit que f est prolongeable par continuité en x0 par la fonction: f : Df ∪ {x0} → R x ↦→ ∣ ∣ ∣ ∣ f(x) si x = x0 , l si x = x0 .
Si une suite de fonctions ( ) converge simplement sur vers une fonction , si la suite ( ) converge uniformément sur tout fermé borné de et si les sont continues sur , alors est continue sur .
Une fonction est donc prolongeable par continuité en un point extérieur à son domaine de définition si elle admet une limite finie en ce point. Pour une fonction réelle d'une variable réelle, cette propriété assure notamment son intégrabilité en ce point.
f (x0) = f1 (x0) + if2 (x0). On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .
f . Dire qu'une fonction f est continue en a signifie donc que lorsque x se rapproche de a , alors f(x) se rapproche de f(a) .
Dérivabilité et continuité
La dérivabilité d'une fonction ne se cherche donc qu'en des points où la fonction est déjà continue. La réciproque de cette affirmation est fausse : il existe des fonctions continues en a mais non dérivables en ce point.
Les zéros ou les racines d'un polynôme 𝑓 ( 𝑥 ) sont les valeurs 𝑥 = 𝑎 telle que 𝑓 ( 𝑎 ) = 0 . Si 𝑓 est un polynôme et que 𝑓 ( 𝑎 ) = 0 , alors ( 𝑥 − 𝑎 ) est un facteur de 𝑓 .
Notion de continuité
On dit qu'une fonction f est continue en a si lim(x→a) f(x)= f(a). On dit qu'une fonction f est continue sur un intervalle I si pour tout x_0∈I lim(x→x0)f(x) = f(x0).
Il s'agit en fait d'une propriété générale : une fonction n'est pas dérivable aux points où elle n'est pas continue.
si la dérivée n-i`eme, notée f(n), est continue, alors on dit que f est de classe Cn. (5) Si f est de classe Cn pour tout n ∈ N, alors f est infiniment dérivable, on dit que f est de classe C∞.
Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)
La fonction valeur absolue est continue en 0, mais elle n'est pas dérivable en 0. Soit f une fonction continue sur un intervalle I. Si a et b sont deux réels de I et si k est un réel compris entre f(a) et f(b), alors il existe au moins un réel x compris entre a et b tel que f(x) = k.
La fonction valeur absolue n'est pas dérivable en 0.
Prenons f(x)=x3sin(1x2), f est prolongeable par continuité en 0 et on a f(0)=0. f est aussi dérivable en 0 et on a f′(0)=0. Maintenant en considérant la définition de la 2-dérivabilité ci-dessus, on montre f est 2 fois dérivable en 0.
On considère la fonction f définie sur R par f(x) = x sin x. donc f(xn) tend vers +∞. donc f(yn) tend vers 0. Par un raisonnement semblable à celui de l'exercice précédent, on en déduit que la fonction x ↦→ cos (1 x ) n'admet pas de limite en 0.
En 0, sa limite à gauche vaut –∞ et à droite, +∞.
a/ Pour résoudre l'inéquation f(x) < 0, on repère la portion de courbe au dessous de l'axe des abscisses (Ox) : les abscisses correspondantes donnent l'ensemble solution. Si l'inéquation à étudier est f(x) ≤ 0, on prend également les abscisses des points d'intersection. donnent l'ensemble solution.
Si ƒ est continue et strictement monotone sur un intervalle [a ; b], alors pour tout nombre k compris entre ƒ(a) et ƒ(b), alors l'équation ƒ(x) = k admet une unique solution dans [a ; b].
Si la fonction f ( x , y ) admet des dérivées partielles (par rapport à et ) qui sont continues, et si l'on se fixe des réels et , il existe une solution et une seule de l'équation y ′ = f ( x , y ) , définie sur un intervalle contenant , qui vérifie u ( x 0 ) = y 0 .
La forme canonique est une forme d'écriture paramétrique de l'équation d'une fonction. On dit que la forme canonique d'une fonction est porteuse de sens puisqu'elle donne de l'information sur l'allure de son graphique. On l'appelle aussi forme transformée.
En mathématiques, plus précisément en analyse et en géométrie, une fonction homographique est une fonction qui peut être représentée sous la forme d'un quotient de deux fonctions affines. C'est donc un cas particulier de fonction rationnelle où les polynômes au numérateur et au dénominateur sont de degré un.