Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
Pour effectuer une hypothèse, si les informations sur la population sont complètement connues, sous forme de paramètres, le test est dit test paramétrique alors que, s'il n'y a pas de connaissance sur la population et qu'il est nécessaire de tester l'hypothèse sur la population, le test effectué est considéré comme le ...
Test statistique utilisé lorsque la ou les variables utilisées suivent une distribution prédéterminée. À l'exception du cas où la ou les variables suivent une loi normale, les tests paramétriques requièrent des échantillons de taille importante (> 30 observations).
Le test U de Mann-Whitney peut être utilisé pour tester si deux groupes indépendants ont été tirés de la même population. Ce test est surtout utilisé pour étudier si une variable indépendante nominale dichotomique influence une variable dépendante ordinale de scores.
La puissance d'un test est égale à 1 - β ou encore la puissance est la probabilité de rejeter E0 à raison. À retenir Généralement la puissance doit au moins être égale à 0,80 pour être considérée comme satisfaisante.
Quel est l'avantage d'utiliser un test non-paramétrique ? Les tests non-paramétriques sont plus robustes que les tests paramétriques. En d'autres termes, ils peuvent être utilisés dans un plus grand nombre de situations.
Lorsque on a affaire à deux échantillons appariés (c'est-à-dire non indépendants), on applique le test de Wilcoxon. Tous ces tests sont dits non paramétriques car ils ne nécessitent pas d'estimation de la moyenne et de la variance.
L'énorme avantage de ce test est sa simplicité, même si de ce fait son utilisation est limitée. Comme tous les tests statistiques, il consiste, à partir de ce qui est observé, à mettre en évidence un évènement dont on connait la loi de probabilité (au moins sa forme asymptotique).
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Tests non paramétriques
Pour statuer sur la significativité de l'écart de la médiane à la médiane théorique, il suffit donc de vérifier si la fréquence de 11 fois sur 14 est significativement différente de 50%. On observe que cet écart est limite.
Les trois tests de corrélation les plus utilisés sont ceux de Spearman, Kendall et Pearson. Les deux premiers sont des tests non-paramétriques que l'on peut également appliquer sur des variables qualitatives ordinales.
Les plus populaires sont l'AIC (Akaike's Information Criterion) et le BIC (ou SBC, Bayesian Information Criterion). Lorsque différents modèles paramétriques sont comparés, le modèle associé à l'AIC ou au BIC le plus faible a la meilleure qualité parmi les modèles comparés.
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
Seuls tests applicable pour un échantillon de taille inférieure `a 6.
Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...); Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
Paramétrer un test de Mann-Whitney avec XLSTAT
Une fois que XLSTAT-Pro est activé, cliquez sur le menu XLSTAT / Tests non paramétriques / Comparaison de 2 échantillons (Wilcoxon, Mann-Whitney…). Une fois le bouton cliqué, la boîte de dialogue apparaît. Vous pouvez alors sélectionner les données sur la feuille Excel.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
L'eta-carré, basé sur la statistique H, peut être utilisé comme mesure de la taille de l'effet du test Kruskal-Wallis. Il se calcule comme suit : eta2[H] = (H - k + 1)/(n - k) ; où H est la valeur obtenue dans le test de Kruskal-Wallis ; k est le nombre de groupes ; n est le nombre total d'observations (M. T.
Lorsque vous réalisez de multiples tests de significativité statistique sur les mêmes données, l'ajustement de Bonferroni peut être appliqué pour qu'il soit plus "difficile" à ces tests d'être statistiquement significatifs.
Le test statistique se base sur le coefficient de Pearson r calculé par cor(x, y) . Il suit une distribution t avec un degré de liberté ddl = length(x)-2 si les échantillons suivent une distribution normale indépendante. La fonction indique enfin une p-value pour ce test.
Deux échantillons E1 et E2 sont dit appariés lorsque chaque valeur x1,i de E1 est associée à une valeur x2,i de E2 (appariés = associés par paire : variables dépendantes). Par exemple E1 peut être un groupe de malades avant traitement et E2 le groupe des mêmes malades après traitement.
Test de Mann Whitney
Il correspond à la version non paramétrique du test de Student pour deux échantillons indépendants. Il est également appelé le test de Wilcoxon de la somme des rangs ou le test de Wilcoxon-Mann Whitney.
Vérifier la normalité des données continues est une étape cruciale avant la réalisation d'un test d'hypothèse mettant en jeu une ou plusieurs variables continues. Il s'agit donc de s'assurer que les variables continues sont distribuées selon la loi normale.
Le test des rangs signés de Wilcoxon sur échantillons appariés est une alternative non paramétrique au test t sur échantillons appariés pour comparer les données appariés. Il est utilisé lorsque les données ne sont pas distribuées normalement.