Si π/2 ≤ θ ≤ 3π/2, cosθ est négatif. Quand θ est entre π et 3π/2, le sinus et le cosinus sont tous les deux négatifs. Et quand θ est dans le quatrième quadrant (en bas à droite) le cosinus est positif, et le sinus est négatif.
Sa représentation graphique est symétrique par rapport à l'origine du repère. Propriété : Les fonctions cosinus et sinus sont dérivables en 0 et on a : cos'(0) = 0 et sin'(0)=1.
En effet, la fonction cosinus est périodique de période 2π, et on sait que sur l'intervalle [0,2π[, elle ne s'annule qu'aux points π/2 et 3π/2. Ainsi, pour tout x ∈ R, cos(x) = 0 si et seulement si x = π/2 + k×2π avec k ∈ Z OU x=3π/2 + l×2π avec l ∈ Z : on retrouve bien l'ensemble des multiples impairs de π/2.
On peut identifier si le sinus, le cosinus et la tangente sont positifs ou négatifs en fonction du quadrant dans lequel se situe leur angle. Dans le quadrant un, les relations sinus, cosinus et tangente sont toutes positives.
Les fonctions sinus et cosinus n'ont pas de limite en l'infini.
Si 0 ≤ θ ≤ π, sinθ est positif. Si π/2 ≤ θ ≤ 3π/2, cosθ est négatif. Quand θ est entre π et 3π/2, le sinus et le cosinus sont tous les deux négatifs. Et quand θ est dans le quatrième quadrant (en bas à droite) le cosinus est positif, et le sinus est négatif.
En particulier, cela signifie que l'abscisse 𝑥 du point d'intersection entre le côté de l'angle et le cercle trigonométrique est également positive. Le cosinus de cet angle est donc positif. De même, si l'angle se situe dans le deuxième ou troisième quadrant, son cosinus est négatif.
Pour l'instant tu n'as dû étudier que les cas des angles aigus (inférieurs à 90°). C'est le cas le plus fréquent en maths de collège. Maintenant, tu est bien d'accord que des angles supérieurs à 90° existe... Eh bien au-delà de cette valeur, les cosinus sont négatifs.
Sin = Opposé / Hypoténuse (S.O.H.) Cos = Adjacent / Hypoténuse (C.A.H.) Tan = Opposé / Adjacent (T.O.A.)
La courbe de la fonction cosinus est symétrique par rapport à l'axe des ordonnées. La fonction cosinus est paire, ce qui signifie que pour tout x de : cos(x) = cos(–x). La courbe de la fonction sinus est symétrique par rapport au centre du repère O.
Trouver la mesure d'un angle à l'aide de cos−1
Pour déterminer la mesure d'un angle aigu dans un triangle rectangle à l'aide du rapport cosinus, on doit connaitre la mesure de son côté adjacent et celle de l'hypoténuse.
Par exemple, le cosinus est le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
Donner un arrondi au millième. cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Formules fondamentales :
tg x = sin x / cos x. cotg x = cos x / sin x. 1 + tg² x = 1 / cos² x.
Nous pouvons donc également voir que le sinus de 30 degrés est égal à un demi et le cosinus de 30 degrés est égal à racine de trois sur deux.
Exemple : Si ABC est un triangle rectangle en A alors on a : Remarque : l'hypoténuse étant le plus grand côté dans un triangle rectangle, le rapport est toujours plus petit que 1. Le cosinus d'un angle aigu est donc un nombre compris entre 0 et 1.
Si l'angle est nul, M=I et donc le sinus, en ordonnée, est égal à zéro.
Pour la tracer, on construit un rectangle permettant d'encadrer un cycle, puis on le reproduit. Avant de tracer cette fonction, il importe de définir certains termes et leurs liens avec les paramètres a, b, h et k de la règle de la fonction sinus : f(x)=asin(b(x−h))+k. f ( x ) = a sin ( b ( x − h ) ) + k .
La trigonométrie a pour objectif de simplifier la résolution de problèmes géométriques. En effet, l'utilisation de formules trigonométriques permet de : Calculer la longueur d'un côté d'un triangle rectangle lorsqu'on connaît la longueur d'un côté et les mesures d'au moins 2 angles.
L'expression fonction trigonométrique est un terme général utilisé afin de désigner, entre autres, l'une ou l'autre des fonctions suivantes: sinus, cosinus, tangente, sécante, cosécante, cotangente. On appelle aussi ces fonctions des fonctions circulaires.
La fonction qui associe à tout nombre réel compris au sens large entre −1 et 1 la valeur de son arc cosinus en radians est notée arccos (Arccos ou Acos en notation française, et cos−1, parfois acos ou acs, en notation anglo-saxonne).
Trigonométrie Exemples
La valeur exacte de cos(45) est √22 . Le résultat peut être affiché en différentes formes.
COS : le nombre de m² constructibles par m² de sol
Le COS est fixé par le plan local d'urbanisme (PLU) et peut varier dans certaines zones. Il se calcule en m² constructibles par m² de sol, exemple : terrain (390 m²) × COS (0,4) = construction possible de 156 m².
Plus le COS est faible, moins le matériel de présentation est présent et plus les allées de circulation sont larges. Inversement, le magasin paraît étroit avec un COS élevé.