Quand θ est entre π et 3π/2, le sinus et le cosinus sont tous les deux négatifs. Et quand θ est dans le quatrième quadrant (en bas à droite) le cosinus est positif, et le sinus est négatif.
La fonction cosinus possède un zéro lorsque l'angle θ a effectué un quart de tour (θ=π2), puis un autre lorsque θ a parcouru les trois quarts du tour (θ=3π2). Puisque la rotation du cercle est infinie, la fonction possède une infinité de zéros.
En effet, la fonction cosinus est périodique de période 2π, et on sait que sur l'intervalle [0,2π[, elle ne s'annule qu'aux points π/2 et 3π/2. Ainsi, pour tout x ∈ R, cos(x) = 0 si et seulement si x = π/2 + k×2π avec k ∈ Z OU x=3π/2 + l×2π avec l ∈ Z : on retrouve bien l'ensemble des multiples impairs de π/2.
Exemple : Si ABC est un triangle rectangle en A alors on a : Remarque : l'hypoténuse étant le plus grand côté dans un triangle rectangle, le rapport est toujours plus petit que 1. Le cosinus d'un angle aigu est donc un nombre compris entre 0 et 1.
Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h).
En particulier, cela signifie que l'abscisse 𝑥 du point d'intersection entre le côté de l'angle et le cercle trigonométrique est également positive. Le cosinus de cet angle est donc positif. De même, si l'angle se situe dans le deuxième ou troisième quadrant, son cosinus est négatif.
Maintenant les sinus et cosinus étant définis comme des coordonnées de points, ils peuvent être positifs ou négatifs.
La règle d'une fonction cosinus est f(x)=acos(b(x−h))+k. f ( x ) = a cos ( b ( x − h ) ) + k .
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
Ces fonctions trigonométriques ont déjà été étudiées en Seconde. Aux deux infinis, les fonctions sinus et cosinus n'admettent pas de limite. En effet ces deux fonctions étant 2 -périodiques, elles reproduisent à l'infini un motif. Elles ne vont ni vers une valeur finie, ni vers un infini.
La fonction cosinus est paire, ce qui signifie que pour tout x de : cos(x) = cos(–x). La courbe de la fonction sinus est symétrique par rapport au centre du repère O. La fonction sinus est impaire, ce qui signifie que pour tout x de : sin(x) = – sin(x).
La fonction sinus est dérivable en 0 et sin'(0) = 1. Pour x non nul, le taux de variation de la fonction sinus entre x et 0 est : tsin(x) = .
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Par exemple, le cosinus est le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
- Le cosinus d'un angle n'a pas d'unité. - Le cosinus d'un angle est toujours compris entre 0 et 1.
Nous pouvons donc également voir que le sinus de 30 degrés est égal à un demi et le cosinus de 30 degrés est égal à racine de trois sur deux.
Le sinus de 𝐴 moins 𝐵 est égal à sin 𝐴 cos 𝐵 moins cos 𝐴 sin 𝐵. Nous pouvons donc réécrire sin 180 moins 𝑥 comme sin 180 multiplié par cos 𝑥 moins cos 180 multiplié par sin 𝑥 Nous savons que le sinus de 180 degrés est égal à zéro. Le cos de 180 degrés est égal à moins un. Zéro multiplié par cos 𝑥 est égal à zéro.
Cela signifie que lorsque la valeur de 𝑥, l'angle ou l'argument, augmente, cosinus 𝑥 diminue. Et comme 25 degrés est supérieur à 10 degrés, cosinus de 25 degrés doit être inférieur à cosinus de 10 degrés. Cela confirme une fois de plus que l'affirmation est vraie.
Les rapports trigonométriques nous disent que le sinus de l'angle 𝜃 est égal au côté opposé sur l'hypoténuse. Le cosinus de l'angle 𝜃 est égal au côté adjacent sur l'hypoténuse. Et la tangente de l'angle 𝜃 est égal au côté opposé sur le côté adjacent. Une façon de s'en souvenir est d'utiliser l'acronyme SOHCAHTOA.
On appelle formule d'Al-Kashi, ou loi des cosinus, ou encore théorème de Pythagore généralisé l'égalité suivante, valable dans tout triangle ABC A B C , qui relie la longueur des côtés en utilisant le cosinus d'un des angles du triangle : a2=b2+c2−2b⋅ccos(ˆA).
Dans un triangle rectangle, on appelle le cosinus d'un angle aigu le quotient de la mesure de la longueur du côté adjacent à cet angle par celle de l'hypoténuse du triangle.
Propriété : Pour tout réel x : cos(−x) = cosx, la fonction cosinus est paire ; sin(−x) = −sinx, la fonction sinus est impaire ; cos(x + 2π) = cosx et sin(x + 2π) = sinx, les fonctions sinus et cosinus sont périodiques de période 2π.
Si l'on introduit une notion d'orientation, les angles peuvent prendre n'importe quelle valeur positive ou négative, et le sinus est un nombre compris entre −1 et +1. Le sinus d'un angle α est noté sin(α) ou simplement sin α. Sinus = côté opposé / hypoténuse. Représentation graphique d'une période de la fonction sinus.