Si ⃗ AB et ⃗ CD sont deux vecteurs colinéaires non nuls, alors : 1er cas, vecteurs de même sens : ⃗ ⋅ C D ⃗ = A B × C D \vec {AB}\cdot \vec {CD}=AB\times CD AB ⋅CD =AB×CD.
Si l´angle (OA,OB) est inférieur à PI/2 le produit scalaire est positif, si cet angle est supérieur à PI/2 le produit scalaire est negatif et si cet angle est égal à PI/2 le produit scalaire est nul.
Si les deux vecteurs ont le même sens, alors leur produit scalaire sera toujours un nombre POSITIF. Mais, si les vecteurs sont de sens opposés, alors leur produit scalaire sera NEGATIF. Si un des vecteurs est nul ( égal à 0) alors le produit scalaire des deux vecteurs est nul (égal à 0).
Le produit scalaire de deux vecteurs non nuls et représentés par des bipoints OA et OB est le nombre défini par OA ⋅ OB ⋅ cos(θ). Si l'un des vecteurs est nul alors le produit scalaire est nul.
(d) Le produit scalaire de deux vecteurs. Il s'agit d'une opération de multiplication entre deux vecteurs donnant comme résultat un scalaire, c'est-à-dire un nombre. Il est noté en général avec un point →u⋅→v. Pour le distinguer de la multiplication usuelle, nous le noterons →u⊙→v.
Un produit scalaire nul signifie que les vecteurs sont perpendiculaires, c'est-à-dire, que l'angle entre eux est °. Cela suppose qu'aucun des vecteurs n'est le vecteur nul.
Le cas réel. pour tous v, w, v , w ∈ V et a, b, a ,b ∈ F. Elle est définie positive si ϕ( v, v) ≥ 0 pour tout v ∈ V , et ϕ( v, v) = 0 si et seulement si v = 0. Un produit scalaire sur V est une forme bilinéaire, symétrique, et définie positive.
Soit deux vecteurs →u et →v; le nombre réel résultant de l'opération notée →u⋅→v et telle que →u⋅→v=‖→u‖⋅‖→v‖cosθ, où ‖→u‖ désigne la norme du vecteur u, ‖→v‖ désigne la norme du vecteurv et θ est la mesure de l'angle formé entre les directions des deux vecteurs.
Si ϕ : E × E → C est un produit scalaire, alors ϕ(x,y) est noté 〈x|y〉. Si ϕ : E × E → K est un produit scalaire, alors ϕ(x,y) est noté 〈x|y〉. Si 〈·|·〉 est un produit scalaire sur E alors pour tout x ∈ E, 〈x|x〉 ≥ 0. On pose alors x = √〈x|x〉 qu'on appelle la norme de x.
Soient u et v , deux vecteurs de coordonnées respectives (xy) et (x′y′). Le déterminant de u et v est le réel det(u ;v )=xy′−yx′. Propriété : Deux vecteurs sont colinéaires si, et seulement si, leur déterminant est nul. Le déterminant de u (−3 ;9) et v (1 ;−3) est det(u ;v )=(−3)×(−3)−9×1=0.
Le produit scalaire est distributif : ⃑ 𝑢 ⋅ ⃑ 𝑣 + ⃑ 𝑤 = ⃑ 𝑢 ⋅ ⃑ 𝑣 + ⃑ 𝑢 ⋅ ⃑ 𝑤 . Considérons une propriété utile du produit scalaire lorsqu'on s'intéresse au produit scalaire d'un vecteur par lui-même, qu'on va calculer dans l'exemple suivant.
où le point centré représente le produit scalaire(*). La vérification du fait que ce produit est associatif est aisée. Elle repose sur deux propriétés classiques du produit vectoriel, à savoir le fait qu'il agit par applications antisymétriques et l'identité du double produit vectoriel.
Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ⋅v =0.
Le produit scalaire et le produit vectoriel sont deux calculs réalisés à partir deux vecteurs de même nombre de composantes. Ils ont en revanche des différences fondamentales: Avec le produit scalaire on obtient un scalaire (c'est-à-dire un nombre) tandis qu'avec le produit vectoriel on obtient un vecteur.
La norme euclidienne associée `a un produit scalaire vérifie x = 0 ⇔ x = 0 et λx = |λ|x pour tout réel λ. Voici d'autres pro- priétés. |(x | y)|≤x y . L'égalité a lieu si et seulement si x et y sont colinéaires.
Le produit vectoriel est commutatif, quel que soit l'ordre dans lequel interviennent les deux vecteur, le résultat reste le même.
Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
Si nous avons deux vecteurs u → = ( u x u y u z ) et v → = ( v x v y v z ) , la formule du produit vectoriel est donnée par u → ∧ v → = ( u 2 v 3 − u 3 v 2 u 3 v 1 − u 1 v 3 u 1 v 2 − u 2 v 1 ) Pour te rappeler de cette formule tu peux également considérer le produit vectoriel comme étant le déterminant de la matrice ...
Le produit scalaire de deux vecteurs et colinéaires est égal à AB × CD s'ils sont de même sens, et à - AB × CD s'ils sont de sens contraires. Pour calculer le produit scalaire . , on peut remplacer le vecteur par sa projection orthogonale sur le vecteur . → AB . → CD = → AB .
On calcule la matrice produit C = A B . Chacun des éléments de la matrice est le produit scalaire du vecteur associé à l'une des lignes de la matrice et du vecteur associé à l'une des colonnes de la matrice . Plus précisément c i , j est le produit scalaire du vecteur a i → et du vecteur b j → .
Si les vecteurs sont parallèles et de même sens, leur produit scalaire est égal au produit de leurs longueurs. En effet : α = 0 et cos 0 = 1 . Si les vecteurs sont parallèles et de sens contraires, leur produit scalaire est égal à l'opposé du produit de leurs longueurs.
Produit scalaire et vecteurs colinéaires
Si ⃗ AB et ⃗ CD sont deux vecteurs colinéaires non nuls, alors : 1er cas, vecteurs de même sens : ⃗ ⋅ C D ⃗ = A B × C D \vec {AB}\cdot \vec {CD}=AB\times CD AB ⋅CD =AB×CD.
Remarques : Deux vecteurs non nuls sont colinéaires si et seulement s'ils ont la même direction. Le vecteur est colinéaire à tout vecteur du plan.
On trouve les coordonnées de chaque vecteur. On regarde si les coordonnées des vecteurs sont proportionnelles. Si les coordonnées sont proportionnelles, alors les vecteurs sont colinéaires. Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires.