Quand on accepte H0 ?

Interrogée par: Aurélie Auger  |  Dernière mise à jour: 10. Dezember 2024
Notation: 4.7 sur 5 (56 évaluations)

Cela s'articule habituellement autour de l'hypothèse nulle (H0): si on accepte l'hypothèse nulle, l'hypothèse alternative (H1) est infirmée; inversement, si on rejette l'hypothèse nulle, l'hypothèse alternative est confirmée.

Quand accepter l'hypothèse nulle ?

La règle de décision est la suivante: si la valeur calculée du critère statistique est inférieure à la valeur critique de la distribution de F, au seuil de signification voulu, on accepte l'hypothèse nulle, à savoir que les deux échantillons sont prélevés dans des populations de même variance.

Comment choisir H0 et H1 ?

Si H0 est vraie, alors la kinésithérapie est inefficace, le taux de guérison sera identique dans les 2 groupes. Si H1 est vraie, alors la kinésithérapie est efficace ou délétère, le taux de guérison sera différent entre les 2 groupes.

Comment définir H0 ?

L'hypothèse nulle notée H0 est l'hypothèse que l'on désire contrôler : elle consiste à dire qu'il n'existe pas de différence entre les paramètres comparés ou que la différence observée n'est pas significative et est due aux fluctuations d'échantillonnage. Cette hypothèse est formulée dans le but d'être rejetée.

Comment déterminer H0 ?

H0 : µ = µ0 H1 : µ = µ0. 2. Calcul de la statistique pertinente avec les valeurs de l'échantillon : Z0 = X − µ0 σ/ √ n .

Les bases de la statistique (Partie 8): L'hypothèse Null et l'hypothèse alternative

Trouvé 21 questions connexes

Quand P est significatif ?

Soit p>0,05: la différence n'est pas significative, on ne peut pas conclure à une différence. Soit p≤0,05: la différence est significative, le risque pris est précisé, sa valeur est appelée degré de signification.

Comment interpréter la P-value ?

Niveau de signification

Si la valeur p calculée est inférieure à cette valeur, l'hypothèse nulle est rejetée, sinon elle est maintenue. En règle générale, on choisit un niveau de signification de 5 %. alpha < 0,01 : résultat très significatif. alpha < 0,05 : résultat significatif.

Comment formuler l'hypothèse nulle ?

L'hypothèse nulle notée H0 est l'hypothèse que l'on désire contrôler : elle consiste à dire qu'il n'existe pas de différence entre les paramètres comparés ou que la différence observée n'est pas significative et est due aux fluctuations d'échantillonnage. Cette hypothèse est formulée dans le but d'être rejetée.

Quand utiliser un test unilatéral ?

Le test unilatéral permet de conclure de manière significative uniquement en cas d'observation d'une différence négative. Il ne permet donc de conclure qu'à la supériorité de A sur B. Pout toutes les autres valeurs de différences observées, le résultat est non significatif.

Comment s'appelle le test permettant de vérifier son hypothèse ?

En statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données.

Quels sont les critères d'une bonne hypothèse ?

Afin d'élaborer une hypothèse, il faut :
  • poser une bonne question sous forme vérifiable ;
  • comprendre les variables indépendantes et contrôlées qui entrent en jeu ;
  • posséder des connaissances préalables, par exemple des observations et de la recherche ;
  • réfléchir à la façon de mener l'enquête (la marche à suivre).

Comment interpréter un test statistique ?

Comment interpréter les sorties d'un test statistique : le niveau de significativité alpha et la p-value. Lors de la mise en place d'une étude, il faut spécifier un seuil de risque au-dessus duquel H0 ne doit pas être rejetée. Ce seuil est appelé niveau de significativité alpha et doit être compris entre 0 et 1.

Quels sont les différents types d'hypothèses ?

Il existe différents types d'hypothèses. Nous distinguons quatre types : l'hypothèse descriptive, l'hypothèse explicative en termes de facteurs, l'hypothèse explicative en termes de typologie, l'hypothèse explicative en termes de processus.

C'est quoi une erreur de type 1 ?

Une erreur de type I survient dans un test d'hypothèse statistique lorsqu'une hypothèse nulle, qui est en réalité vraie, est rejetée par erreur. Les erreurs de type I sont également connues sous le nom de « faux positifs », elles représentent la détection d'un effet positif alors qu'il n'existe aucun effet en réalité.

Comment expliquer l'hypothèse ?

L'hypothèse est en effet une réponse provisoire à la question préalablement posée. Elle tend à émettre une relation entre des faits significatifs et permet de les interpréter. Pour que la recherche soit valable, les hypothèses doivent cependant être vérifiables, plausibles et précises.

C'est quoi une hypothèse bilatérale ?

Avant l'opération de collecte des données, si nous ignorons le côté (droit ou gauche) de la cloche où la statistique se positionnerait sous l'hypothèse alternative, les deux côtés de la cloche sont considérés. On parle alors d'hypothèse alternative bilatérale.

Quand faire un test de Wilcoxon ?

Le test de Wilcoxon compare deux séries ou groupes de données d'une même variable quantitative ou semi-quantitative. Il s'applique lorsque nous ne pouvons pas utiliser le test T de Student car les conditions de normalité des données ne sont pas validées.

Comment reconnaître un test unilatéral ?

Le test est dit unilatéral lorsque la nullité de l'hypothèse met en évidence si une valeur est supérieure ou égale au résultat de test (unilatéral gauche) ou inférieure ou égale à ce résultat (unilatéral droit).

Comment calculer le test t de Student ?

on calcule la probabilité observée : p=kn. p = k n . on calcule l'écart du test : t=|p−p0|√p(1−p)√n.

Quels sont les 5 étapes d'une étude statistique ?

Page principale
  • Les données, l'information statistique et les statistiques.
  • Les sources de données.
  • Collecte et traitement des données.
  • Exploration des données.
  • Visualisation des données.

Comment choisir un seuil de significativité ?

Choisissez un seuil de signification plus élevé, tel que 0,10, si vous souhaitez augmenter le risque de déclarer qu'un effet est significatif sur le plan statistique alors qu'aucun effet n'existe et donc avoir une plus grande puissance de détection d'un effet important.

Pourquoi calculer la p-value ?

L'idée générale est de déterminer si l'hypothèse nulle est ou n'est pas vérifiée car dans le cas où elle le serait, le résultat observé serait fortement improbable.

Quelle est la formule pour calculer le p ?

La valeur de p pour : un test unilatéral à gauche est exprimé comme suit : valeur de p = P(ST st | H 0 est vrai) = cdf(ts)

Pourquoi p-value 5% ?

Une valeur-p de 0,05 signifie qu'il y a une chance sur 20 qu'une hypothèse correcte soit rejetée plusieurs fois lors d'une multitude de tests (et n'indique pas, comme on le croit souvent, que la probabilité d'erreur sur un test unique est de 5 %).

Quel est la valeur du p ?

Une valeur p, qui signifie valeur de probabilité, est une mesure statistique comprise entre 0 et 1. Elle est utilisée pour un test d'hypothèse. Dans des essais cliniques, elle est utilisée pour donner une indication qui détermine si un résultat observé dans un essai clinique peut être dû à un hasard ou non.