Elle est notamment utilisée pour les tests de Student, la construction d'intervalle de confiance et en inférence bayésienne.
Application : La loi de Student intervient dans les tests de comparaison de deux espérances en raison de la propriété fondamentale suivante : si X1,…,Xn X 1 , … , X n sont des variables aléatoires indépendantes suivant une loi normale de même espérance m et de même variance, si Mn=1nn∑k=1Xi M n = 1 n ∑ k = 1 n X i est ...
Le test-t de Student est un test statistique permettant de comparer les moyennes de deux groupes d'échantillons. Il s'agit donc de savoir si les moyennes des deux groupes sont significativement différentes au point de vue statistique.
Cette loi est principalement utilisée dans le test du χ2 basé sur la loi multinomiale pour vérifier l'adéquation d'une distribution empirique à une loi de probabilité donnée. Plus généralement elle s'applique dans le test d'hypothèses à certains seuils (indépendance notamment).
Grâce à cette propriété, une loi normale permet d'approcher d'autres lois et ainsi de modéliser de nombreuses études scientifiques comme des mesures d'erreurs ou des tests statistiques, en utilisant par exemple les tables de la loi normale centrée réduite.
En résumé, pour justifier que X suit une loi binomiale, il suffit de dire que : on répète des épreuves identiques et indépendantes. chaque épreuve comporte deux issues (Succès ou Echec). X compte le nombre de succès à la fin de la répétition des épreuves.
La loi normale est la loi statistique la plus répandue et la plus utile. Elle représente beaucoup de phénomènes aléatoires. De plus, de nombreuses autres lois statistiques peuvent être approchées par la loi normale, tout spécialement dans le cas des grands échantillons.
La table nous dit que la surface `a droite de 2.262 est 0.025 et que la surface `a droite de 2.821 est 0.01. La surface recherchée est donc quelque part entre 0.01 et 0.025. Autrement dit, si T suit la loi de Student avec 9 degrés de liberté, alors 0.01 < P[T ≥ 2.4] < 0.025.
Plus la valeur de la statistique du khi-carré est élevée, plus la différence entre les effectifs de cellules observés et théoriques est importante, et plus il apparaît que les proportions de colonne ne sont pas égales, que l'hypothèse d'indépendance est incorrecte et, par conséquent, que les variables Situation d' ...
Le calcul du Khi2 des données s'effectue comme suit : La donnée observée moins la donnée de l'hypothèse nulle mise au carré et finalement divisée par la donnée de l'hypothèse nulle. *Le « O » est la donnée observée et le « E » est la donnée de l'hypothèse nulle. On répète cette formule pour chaque cellule du tableau.
Le test exact de Fisher calcule la probabilité d'obtenir les données observées (en utilisant une distribution hypergéométrique) ainsi que les probabilités d'obtenir tous les jeux de données encore plus extrêmes sous l'hypothèse nulle. Ces probabilités sont utilisées pour calculer la p-value.
Deux tests statistiques, le test de Student et le test de Wilcoxon, sont généralement employés pour comparer deux moyennes. Il existe cependant des variantes de ces deux tests, pour répondre à différentes situations, comme la non indépendance des échantillons par exemple.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
STUDENT est calculée comme suit : LOI. STUDENT = P( X>x ), où X est une variable aléatoire qui suit la distribution t. Si l'argument uni/bilatéral = 2, LOI. STUDENT est calculée comme suit : LOI.
Pour lire la table, il faut connaître deux paramètres: le nombre total d'essais (N) et la probabilité d'obtenir un succès sur un essai particulier (p). Tous les essais doivent être identiques, de telle façon que la probabilité p ne change pas au cours des N essais.
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
Le test statistique se base sur le coefficient de Pearson r calculé par cor(x, y) . Il suit une distribution t avec un degré de liberté ddl = length(x)-2 si les échantillons suivent une distribution normale indépendante. La fonction indique enfin une p-value pour ce test.
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
Si le signe de Z est positif cela signifie que l'on se situe à 2.5 σ à droite de la moyenne. Si on lit la valeur sur la table correspondant à 2.5 sur la deuxième page, on trouvera une probabilité de 0.9938. La valeur de 0.9938 correspond à la probabilité associée à toutes les valeurs inférieures à 25.
On lit la valeur de Ctable dans la table de Cochran pour un risque généralement choisi à 5% et pour n et k. Si Ctest est plus petit ou gal à Ctable , alors on accepte l'hypothèse selon laquelle les variance des populations sont égales entre elles. Dans le cas contraire, on rejette l'hypothèse d'égalité des variances.
La courbe de Gauss est connue aussi sous le nom de « courbe en cloche » ou encore de « courbe de la loi normale ». Elle permet de représenter graphiquement la distribution d'une série et en particulier la densité de mesures d'une série. Elle se base sur les calculs de l'espérance et de l'écart-type de la série.
Un modèle de mélange gaussien (désigné couramment par l'acronyme anglais GMM pour Gaussian Mixture Model) est un modèle statistique exprimé selon une densité mélange.
La loi de Poisson est aussi appelé la LOI des évenements rares. La loi de Poisson se définit par une formule assez compliquée. E[X] = λ σ (X) = √ λ. C'est la seule LOI connue qui ait toujours son espérance égale à sa variance.