La moyenne est utilisée pour des distributions normales, ayant un faible nombre de valeurs aberrantes. La médiane est généralement utilisée pour retourner la tendance centrale des distributions asymétriques.
Quelle différence entre médiane et moyenne ? La médiane divise une série statistique en deux parts égales, alors que la moyenne est la somme des valeurs de la série, divisée par le nombre de valeurs de cette même série.
La moyenne prend en compte toutes les valeurs et peut-être très influencée par des valeurs extrêmes voire aberrantes du caractère. Définition : La médiane est un nombre qui permet de partager la population en deux groupes de même effectif.
En mathématiques, la moyenne correspond à la somme des valeurs divisé par le nombre de valeurs. La médiane indique le point central d'un ensemble de valeurs, le partageant en deux parties, avec autant de valeurs en dessous et au-dessus de ce nombre.
La médiane et le mode sont les mêmes. La distribution est désaxée vers la droite; la moyenne est donc supérieure à la médiane. La médiane est une meilleure mesure de tendance centrale lorsque les distributions sont désaxées.
L'avantage d'utiliser la médiane plutôt que la moyenne est qu'elle est plus robuste aux valeurs extrêmes qui pourraient surgir à l'une des extrémités de la distribution. Il est donc important de vérifier si les données comptent des valeurs extrêmes avant de choisir quelle mesure de tendance centrale doit être utilisée.
Dans une série de données, la médiane se calcule en ordonnant la série de la plus petite valeur à la plus grande, puis en repérant la donnée qui « coupe la série en deux » : la moitié des données est supérieure à elle, l'autre moitié est inférieure.
La moyenne est un des premiers indicateurs statistiques pour une série de nombres. Lorsque ces nombres représentent une quantité partagée entre des individus, la moyenne exprime la valeur qu'aurait chacun si le partage était équitable.
On considère la série de nombres suivante: 3-4-6-6-8-15. Complète. La série est déjà rangé dans l'ordre croissant. La moyenne de cette série est : 7.
La moyenne est l'indicateur le plus simple pour résumer l'information fournie par un ensemble de données statistiques : elle est égale à la somme de ces données divisée par leur nombre. Elle peut donc être calculée en ne connaissant que ces deux éléments, sans connaître toute la distribution.
Si l'effectif est impair, la médiane est la (N+1)/2ème valeur. Ici, Ni est un nombre pair (24). La médiane, qui sépare le nombre d'individus en deux parties égales, est donc la moyenne des (N/2)ème et (N+1)/2ème valeurs. Soit, dans notre exemple, la moyenne entre la 12ème et la 13ème valeur : Me = 10,5.
L'écart-type sert à mesurer la dispersion, ou l'étalement, d'un ensemble de valeurs autour de leur moyenne. Plus l'écart-type est faible, plus la population est homogène.
On l'obtient simplement en additionnant l'ensemble des valeurs et en divisant cette somme par le nombre de valeurs.
1. Qui se situe dans le milieu d'un corps, d'un objet, d'une surface : Plan médian. 2. Se dit d'un phonème dont le lieu d'articulation se situe vers le milieu de la cavité buccale et non à l'une de ses extrémités (par exemple, les alvéolaires et les palatales).
L'écart-type ne peut pas être négatif. Un écart-type proche de 0 signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés). Plus les valeurs sont éloignées de la moyenne, plus l'écart-type est élevé.
La moyenne, c'est la somme des prix de vente divisée par le nombre de transactions. La médiane, c'est le prix qui est pile au milieu, c'est-à-dire dont la moitié des transactions a été effectuée au-dessus de cette valeur, et l'autre moitié en-dessous.
La moyenne est calculée en additionnant toutes les valeurs et en divisant la somme par le nombre total de valeurs. La médiane peut être calculée en répertoriant tous les numéros dans l'ordre croissant, puis le nombre dans le centre de distribution.
La moyenne est calculée comme la somme des valeurs d'une série divisée par le nombre de valeurs dans cette série. La médiane divise, quant à elle, la série étudiée en deux groupes égaux.
Voici une série de notes : 7 ; 7 ; 8 ; 8 ; 8 ; 11 ; 13 ; 13 ; 13 ; 14 ; 14 ; 16. La médiane est : 12.
La moyenne pondérée est ainsi extrêmement utile puisqu'elle permet de refléter l'importance de chaque observation du jeu de données, et peut donc permettre une description plus fidèle de la réalité suivant les critères que l'on cherche à observer.
La moyenne arithmétique. C'est la moyenne la plus connue, et pour cause : on l'utilise dès l'enseignement primaire.
Déterminer la médiane
Pour calculer la médiane : On classe les valeurs de la série statistique dans l'ordre croissant : Si le nombre de valeurs est impair, la médiane est la valeur du milieu. S'il est pair, la médiane est la demi-somme des deux valeurs du milieu.
Il se différencie du salaire moyen qui est la moyenne de l'ensemble des salaires de la population considérée. » Ainsi, le salaire médian est le niveau de rémunération qui sépare deux groupes comportant le même nombre de salariés.
On effectue leur différence. Exemple 1 : Calculons la moyenne de la série des notes de Pierre : 4 • 9 • 12 • 13 • Somme des valeurs : 4 + 9 + 12 + 13 = 38 • Effectif total : 4 (il y a 4 valeurs) • Moyenne : 38 : 4 = 9,5 La moyenne de cette série est de 9,5. C'est comme si Pierre avait obtenu 4 fois la note 9,5.
le premier quartile (noté généralement Q1) est le salaire au-dessous duquel se situent 25 % des salaires ; le deuxième quartile est le salaire au-dessous duquel se situent 50 % des salaires ; c'est la médiane ; le troisième quartile (noté généralement Q3) est le salaire au-dessous duquel se situent 75 % des salaires.