La forme développée sert à vérifier qu'il s'agit bien d'un polynôme du second
Factoriser une expression numérique ou littérale, c'est l'écrire sous la forme d'un produit. L'expression (3x – 7)(2x + 4) est factorisée car elle n'est composée que d'un seul terme qui comporte deux facteurs. Les expressions possèdent deux termes (séparés par un + ou un – ) comportant chacun deux facteurs.
Règle. Pour passer de la forme factorisée à la forme générale, il suffit de développer de façon algébrique l'équation de la fonction. Soit l'équation d'une fonction polynomiale de degré 2 sous la forme factorisée: f(x)=4(x−2)(x+7) f ( x ) = 4 ( x − 2 ) ( x + 7 ) .
La forme canonique est la forme factorisée. Si Δ est nul, posons r = − b 2 a . La forme canonique est la forme factorisée : a x 2 + b x + c = a ( x − r ) 2 et (E) admet r comme une unique solution.
La factorisation consiste à écrire une expression algébrique sous la forme d'un produit de facteurs. Généralement, la factorisation permet de simplifier une expression algébrique afin de résoudre un problème plus facilement.
Factoriser, c'est transformer une expression développée sous forme d'un produit de facteurs. La factorisation permet donc de simplifier des expressions, et surtout de résoudre des équations.
Pour factoriser il faut trouver un facteur commun, le plus simple est surement un exemple : 12 et 6 ont pour facteur commun 3, car 3x4=12 et 3x2=6, dans les formules on prend pour facteur commun K pour montrer aussi que ça peut être n'importe quel réel ( de moins l'infini à plus l'infini).
Un polynôme du second degré comme peut s'écrire sous 3 formes différentes : est sa forme canonique ; est sa forme développée ; est sa forme factorisée.
La forme canonique d'une fonction polynôme s'obtient par la méthode de complétion du carré. La forme canonique permet d'obtenir le maximum ou le minimum d'une fonction polynôme, le sens et l'axe de symétrie de sa parabole associée.
Forme factorisée
Un trinôme du second degré ax2 + bx + c, est factorisé lorsqu'on l'écrit sous la forme a(x – x1)(x – x2). Si un trinôme ax2 + bx + c peut être factorisé, alors l'équation ax2 + bx + c = 0 a au moins une solution car on a a(x – x1)(x – x2) = 0 pour x = x1 ou x = x2.
Pour rappel : Développer c'est transformer un produit en somme. Factoriser c'est transformer une somme en produit en faisant apparaître son facteur commun. Réduire c'est effectuer dans une expression littérale des calculs possibles.
Développer, c'est transformer un produit en somme algébrique. Réduire une somme algébrique, c'est l'écrire avec le moins de termes possibles. Factoriser, c'est transformer une somme algébrique en produit.
Pour parvenir à factoriser une expression en un produit de facteurs, il faut d'abord chercher si l'on peut isoler un facteur commun. Par exemple on va chercher le terme commun qui permet de multiplier le premier terme par la deuxième expression : 4x+20 par exemple, est égal à 2 x (2x + 10).
La forme factorisée : f(x)=a(x−x1)(x−x2) f ( x ) = a ( x − x 1 ) ( x − x 2 ) où x1 et x2 sont les zéros de la parabole.
En utilisant la formule
Soient a, b et c trois réels avec a non nul. La forme canonique du trinôme f\left(x\right)=ax^2+bx+c est f\left(x\right)=a\left(x-\alpha\right)^2+\beta, avec : \alpha=\dfrac{-b}{2a}
Action de la mettre sous la forme de facteurs, un facteur étant un nombre (ou un groupe de nombres) qui multiplie un ou plusieurs autres nombres (ou groupes de nombres). Transformer une somme algébrique en un produit. Exemple : La factorisation doit mettre en évidence au moins 2 expressions multipliées.
Une fonction polynôme du second degré est une fonction définie sur R par , avec a un réel non nul, b et c deux réels. Sa représentation graphique est une parabole dont les branches sont tournées vers le haut lorsque et vers le bas lorsque . Le sommet S de la parabole est le point de la parabole d'abscisse .
La forme canonique est une forme d'écriture paramétrique de l'équation d'une fonction.
Règle. À partir de l'équation de la fonction, déterminer les coordonnées du sommet (h,k). ( h , k ) . Trouver les valeurs des zéros de la fonction en remplaçant y par 0 puis en isolant x ou en utilisant directement la formule x1,2=h±√−ka.
On peut en déduire une formule. Pour mettre le trinôme x 2 + b x sous forme canonique, il faut ajouter et retrancher ( b 2 ) 2 . Par exemple, pour mettre x 2 + 6 x sous forme canonique, on ajoute et on retranche ( 6 2 ) 2 = 9 .
Cette écriture est la forme canonique de la fonction polynôme. La forme canonique est donc : f ( x ) = 2 ( x + 1 ) 2 − 5 f(x) = 2(x + 1)^2-5 f(x)=2(x+1)2−5.
Propriété d'un polynôme du troisième degré
Si $x_0$ est une racine du polynôme ($P(x_0) = 0$) alors $P$ se factorise sous la forme suivante : $P(x) = (x – x_0)\times Q(x)$ avec $Q$ un polynôme du second degré.
examiner s'il s'agit de sommes ou de produits et compter les termes respectivement les facteurs). Les trois méthodes de factorisation qu'il faut connaître sont : la mise en évidence, les produits (identités) remarquables et le groupement de termes.
La méthode la plus élémentaire pour factoriser un entier n consiste à prendre tous les entiers inférieurs à n, et à tester s'ils divisent n(=algorithme de force brute). C'est bien sûr un algorithme inutilisable si n est grand.