Le test d'indépendance khi-carré sert à déterminer l'existence d'une relation entre deux variables catégorielles. Par exemple, vous pouvez déterminer si la variable Situation d'activité est liée à la variable Situation familiale.
Ce test permet de vérifier l'absence de lien statistique entre deux variables X et Y. Les deux sont dites indépendantes lorsqu'il n'existe aucun lien statistique entre elles, dit autrement, la connaissance de X ne permet en aucune manière de se prononcer sur Y.
Vous utilisez un test du khi-deux pour tester des hypothèses afin de déterminer si les données sont conformes aux attentes. L'idée de base qui sous-tend le test est de comparer les valeurs observées dans vos données aux valeurs attendues si l'hypothèse nulle est vraie.
Qu'est-ce que le test du khi-deux d'indépendance ? Le test du khi-deux d'indépendance est une hypothèse statistique utilisée pour déterminer si deux variables catégorielles ou nominales sont susceptibles d'être liées ou pas.
Pas de contrainte sur la population dont est extrait l´échantillon. Seuls tests applicable pour un échantillon de taille inférieure `a 6.
De plus, pour que ce test soit valide, il faut que toutes les valeurs théoriques calculées soit supérieures ou égal à 5. Si tel n'est pas le cas, ce test ne peut s'appliquer.
En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de rejeter à tort l'hypothèse nulle.
Le test repose sur une loi exacte plutôt que sur une approximation de la loi du Khi deux utilisée pour les tests de Pearson et de rapport de vraisemblance. Le test exact de Fisher est utile lorsque les dénombrements de cellules attendus sont faibles et que l'approximation du Khi deux n'est pas très bonne.
Plus la valeur de la statistique du khi-carré est élevée, plus la différence entre les effectifs de cellules observés et théoriques est importante, et plus il apparaît que les proportions de colonne ne sont pas égales, que l'hypothèse d'indépendance est incorrecte et, par conséquent, que les variables Situation d' ...
Pour les données qui suivent une loi normale, nous privilégions toujours les tests paramétriques. C'est à dire le test T de Student et l'ANOVA. Si cette condition n'est pas remplie, nous devons utiliser des tests non paramètriques tel que le test de Wilcoxon, test de Mann Whitney ou un Kruskal Wallis.
De fait, la distribution khi carré est la somme de carrés de N variables aléatoires dont l'espérance mathématique est distribuée conformément de la lois normale (Gauss). (m-1)(n-1) = DL. Or pour le tableau 2x2 le nombre de degrés de liberté est égale à (2-1)(2-1)=1.
Dans la liste Statistiques, sélectionnez la statistique N % colonne, puis ajoutez-la à la liste Afficher. Cliquez sur Appliquer à la sélection. Dans la boîte de dialogue Tableaux personnalisés, cliquez sur l'onglet Statistiques de test. Sélectionnez Tests d'indépendance (Khi-deux).
Le test le plus utilisé pour tester la liaison entre une variable quantitative et une variable qualitative à deux (2) modalités est le test de Student (alternative test de Man-Withney).
Le test de Student est un outil permettant de vérifier une hypothèse formulée sur un jeu de données. Il est principalement utilisé lorsque l'on sait que l'échantillon de données est supposé suivre une loi normale, comme lorsque l'on joue 100 fois de suite au pile ou face.
Le test du Khi2 peut être employé si tous les effectifs théoriques sont >5. Si au moins un effectif théorique est <5 alors, le test du Khi2 avec correction de Yates, ou bien le test exact de Fisher doivent être employés.
Une approche utilisée dans R avec la fonction "fisher. test" calcule la valeur p en sommant les probabilités de toutes les tables ayant une probabilité inférieure ou égale à celle de la table observée. Le test permet de rejeter l'indépendance entre le sexe et le fait de faire un régime.
Cette quantité appelée Chi-2 local, ou Chi-2 d'une case est égale au carré de l'écart entre valeur observée et valeur théorique, divisé par l'effectif théorique de la case.
Les variables quantitatives correspondent à des informations que l'on peut mesurer, compter. Cela peut être par exemple : la taille, le poids, l'âge, le nombre d'enfants, etc. Les variables qualitatives correspondent à des informations que l'on ne peut pas mesurer, comme le sexe ou la couleur des cheveux.
Le test t est utilisé lorsque vous devez trouver la moyenne de la population entre deux groupes, tandis que lorsqu'il y a trois groupes ou plus, vous optez pour le test ANOVA. Le test t et l'ANOVA sont tous deux des méthodes statistiques permettant de tester une hypothèse.
Une variable qualitative est une variable dont les valeurs sont des caractéristiques ou des catégories. Ces valeurs sont exprimées à l'aide de noms plus ou moins significatifs (par exemple, essai 1, essai 2, essai 3, ...) ou de codes (par exemple, les lettres A, B, C).
Traditionnellement, pour établir s'il existe un effet entre les deux variables qualitatives croisées dans un tableau de contigence, on utilise le test du Khi2 (? ²). Le test V de Cramer permet de comparer l'intensité du lien entre les deux variables étudiées.
V carré de Cramer
Plus les valeurs du V 2 de Cramer sont élevées, plus l'association entre les variables est forte, et plus la valeur du V 2 est basse, plus l'association est faible. Une valeur de 0 indique l'absence d'association. Une valeur de 1 indique que l'association entre les variables est très forte.
Pour calculer les fréquences attendues pour chaque version de la landing page, en supposant qu'il n'existe pas de différence, il faut multiplier le total de la ligne pour la cellule concernée par celui de la colonne pour la même cellule, puis diviser ce nombre par le nombre total de visiteurs.
Cela s'articule habituellement autour de l'hypothèse nulle (H0): si on accepte l'hypothèse nulle, l'hypothèse alternative (H1) est infirmée; inversement, si on rejette l'hypothèse nulle, l'hypothèse alternative est confirmée.