Vous utilisez un test du khi-deux pour tester des hypothèses afin de déterminer si les données sont conformes aux attentes. L'idée de base qui sous-tend le test est de comparer les valeurs observées dans vos données aux valeurs attendues si l'hypothèse nulle est vraie.
Dit plus simplement : si votre Khi2 se situe à gauche de la colonne 0,05, vous ne pouvez pas interpréter votre tableau sans prendre de risques. Remarquez que plus le degré de liberté diminue, plus les khi2 théoriques diminue.
Vous pouvez utiliser le test lorsque vous avez des dénombrements de valeurs pour deux variables catégorielles.
Seuls tests applicable pour un échantillon de taille inférieure `a 6.
Plus la valeur de la statistique du khi-carré est élevée, plus la différence entre les effectifs de cellules observés et théoriques est importante, et plus il apparaît que les proportions de colonne ne sont pas égales, que l'hypothèse d'indépendance est incorrecte et, par conséquent, que les variables Situation d' ...
A.
Le test statistique est utile lorsqu'il faut trancher entre 2 hypothèses : H0 : hypothèse nulle, elle correspond à une situation de statu quo. H1 : hypothèse alternative, elle correspond à l'hypothèse qu'on veut démontrer.
Pour le calcul de cette probabilité, TEST. KHIDEUX utilise la distribution χ2 avec un nombre approprié de degrés de liberté (dl). Si r > 1 et c > 1, alors dl = (r - 1)(c - 1). Si r = 1 et c > 1, alors dl = c - 1 ou si r > 1 et c = 1, alors dl = r - 1.
Le coefficient de Pearson permet de mesurer le niveau de corrélation entre les deux variables. Il renvoie une valeur entre -1 et 1. S'il est proche de 1 cela signifie que les variables sont corrélées, proche de 0 que les variables sont décorrélées et proche de -1 qu'elles sont corrélées négativement.
Pour obtenir le “khi-deux”, on construit un autre tableau, où l'on calcule le carré de la différence entre valeurs observées et valeurs attendues, divisé par les valeurs attendues. On n'a pas encore utilisé la moindre fonction Excel, excepté la fonction SUM pour calculer les totaux en lignes et en colonnes.
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
Le test statistique se base sur le coefficient de Pearson r calculé par cor(x, y) . Il suit une distribution t avec un degré de liberté ddl = length(x)-2 si les échantillons suivent une distribution normale indépendante. La fonction indique enfin une p-value pour ce test.
Le calcul du Khi2 des données s'effectue comme suit : La donnée observée moins la donnée de l'hypothèse nulle mise au carré et finalement divisée par la donnée de l'hypothèse nulle. *Le « O » est la donnée observée et le « E » est la donnée de l'hypothèse nulle. On répète cette formule pour chaque cellule du tableau.
Le dénombrement attendu correspond à l'effectif prévu dans une cellule, approximativement, si les variables sont indépendantes. Minitab calcule les dénombrements attendus comme le produit du total des lignes et du total des colonnes, divisés par le nombre total d'observations.
dl = (c − 1)(l − 1).
Par conséquent, les corrélations sont généralement exprimées à l'aide de deux chiffres clés : r = et p = . Plus r est proche de zéro, plus la relation linéaire est faible. Les valeurs positives de r indiquent une corrélation positive lorsque les valeurs des deux variables tendent à augmenter ensemble.
On distingue divers types de variables selon la nature des données. Ainsi, une variable peut être qualitative ou quantitative; une variable qualitative peut être nominale ou ordinale, alors qu'une variable quantitative peut être continue ou discrète.
L'effectif théorique correspond en effet à l'effectif que l'on observerait s'il y avait indépendance entre les deux modalités de la case concernée. Ainsi : – Si l'effectif observé est supérieur à l'effectif théorique, on peut émettre l'hypothèse que les deux modalités étudiées ne sont pas indépendantes.
Cette quantité appelée Chi-2 local, ou Chi-2 d'une case est égale au carré de l'écart entre valeur observée et valeur théorique, divisé par l'effectif théorique de la case.
On divise chaque effectif par l'effectif total : Par exemple : 90 ÷ 300 = 0,30. On vérifie que la somme des fréquences est égale à 1.
Pour savoir si la distribution des réponses de deux variables qualitatives est due au hasard ou si elle révèle une liaison entre elles, on utilise généralement le test du Khi2 dit «Khi-deux».
Deux tests statistiques, le test de Student et le test de Wilcoxon, sont généralement employés pour comparer deux moyennes. Il existe cependant des variantes de ces deux tests, pour répondre à différentes situations, comme la non indépendance des échantillons par exemple.
Le test du khi² a une puissance plus importante que le test exact de Fisher. En d'autres termes, il est plus apte à rejeter l'hypothèse nulle lorsqu'elle est fausse.
1. Nombre réel d'individus constituant un groupe : L'effectif d'une classe. 2. Nombre d'individus entrant dans la composition d'une armée ou d'une formation militaire.