En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
La hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Ce côté est alors appelé la base du triangle.
Une façon est d'utiliser la formule pour calculer l'aire d'un triangle quelconque : A = 1/2 * base * hauteur. L'autre est d'utiliser la formule trigonométrique : A = 1/2 * a * b * sin(c).
La formule pour calculer l'aire d'un rectangle est L × l, « longueur fois largeur ». Ex. : un rectangle de longueur 8 m et de largeur 5 m a pour aire 8 × 5 = 40 m2.
Méthode avec une équerre
Déposer un côté de l'angle droit de l'équerre sur la base du triangle. Aligner l'autre côté de l'angle droit de l'équerre avec le sommet du triangle. Tracer le segment qui part du sommet et qui rejoint perpendiculairement la base du triangle. Ce segment est la hauteur du triangle.
En géométrie, un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Plus précisément, un triangle ABC est dit isocèle en A lorsque les longueurs AB et AC sont égales. A est alors le sommet principal du triangle et [BC] sa base.
AB = AC. BC est la base du triangle. La médiane (d) part de l'angle primordial et coupe la base BC perpendiculairement. (d) est aussi la bissectrice qui sépare l'angle A en deux parts égales.
Calculer l'aire d'un triangle sans sa hauteur
Si vous ne connaissez pas la mesure de la hauteur de votre triangle, il est néanmoins possible de calculer son aire à partir des longueurs de ses 3 côtés. Où a, b et c sont les longueurs des côtés du rectangle et où p est la moitié du périmètre du triangle.
Il s'agit de triangles rectangles dont les côtés de l'angle droit ont pour mesures a et b. Applique la formule du calcul de l'aire d'un triangle rectangle : aire = (a × b) ÷ 2.
Aire (ABC) = (hauteur × base) ÷ 2 = (h × BC.
Le rectangle est un quadrilatère qui a ses côtés opposés égaux et ses 4 angles droits. L'un des côtés s'appelle longueur ou base; l'autre côté s'appelle largeur ou hauteur.
L'aire d'un solide
L'aire de la base, généralement notée Ab, est la surface occupée par la ou les figures servant de base aux différents solides. L'aire latérale, généralement notée AL, est la surface occupée par les figures qui ne servent pas de bases aux solides.
En trigonométrie donc, le grand côté du triangle est l'hypoténuse et les deux autres côtés sont appelés cathètes. Ça m'intéresse, 25/03/2020, « Comment démontrer qu'un triangle est rectangle ? » Sachant que la base opposée à cet angle droit est appelée hypoténuse.
V = A × h.
La base étant un triangle rectangle, on a : Aire de la base = (3 × 4) ÷ 2 = 12 ÷ 2 = 6 cm².
Exemple de mesure de longueur
On note en résumé : largeur = 21 cm = 21 × 1 cm = 21 × 0,01 × 1 m = 0,21 m et longueur = 29,7 cm = 29,7 × 1 cm = 29,7 × 0,01 × 1 m = 0,297 m .
Comme on connaît les longueurs des trois côtés du triangle, on peut utiliser la formule de Héron pour déterminer son aire. Selon la formule de Héron, l'aire, 𝐴 , d'un triangle de côtés de longueurs 𝑎 , 𝑏 et 𝑐 est 𝐴 = √ 𝑑 ( 𝑑 − 𝑎 ) ( 𝑑 − 𝑏 ) ( 𝑑 − 𝑐 ) , où 𝑑 est le demi-périmètre du triangle.
Dans le cas d'un triangle rectangle ABC rectangle en B, la tangente de l'angle A est égale à la longueur du côté opposé à l'angle A divisée par la longueur du côté adjacent à l'angle A, donc tan A = BC/BA.
Définition : dans un triangle, la hauteur d'un côté est la droite qui est perpendiculaire au côté et qui passe par le sommet opposé. On dit aussi la hauteur issue d'un sommet.
Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Avec les notations du triangle ABC rectangle en A, on a BC2=AB2+AC2.
Calculer les angles d'un triangle ABC : la règle des 180°
Si l'on prend un triangle ABC, dont A, B et C représentent chacun des 3 sommets, on constate cette fois que s'applique la règle des 180° : celle-ci signifie que la somme des angles d'un triangle sera toujours égale à 180°.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Pour calculer l'aire d'un triangle quelconque, on multiplie la base par la hauteur puis on divise par 2.
Définition : Un triangle isocèle a deux côtés de même longueur. On dit que ABC est isocèle en A. A est appelé le sommet principal du triangle isocèle.
Un triangle isocèle a deux angles de même mesure. Un triangle avec deux angles de même mesure est un triangle isocèle. Un triangle isocèle a au moins deux côtés de la même longueur. Un triangle équilatéral a trois côtés de la même longueur.
(Géométrie) Qui a deux côtés égaux. Triangle isocèle.