En base 8, le principe est le même, il faut diviser le nombre à convertir par la plus forte puissance. C'est ainsi que 98 sera divisé par 64 et vous ne retiendrez que la partie entière du quotient.
Dans la soustraction binaire, on procède comme en décimal. Quand la quantité à soustraire est supérieure à la quantité dont on soustrait, on emprunte 1 au voisin de gauche. En binaire, ce 1 ajoute 2 à la quantité dont on soustrait, tandis qu'en décimal il ajoute 10.
Pour passer du binaire en octal : on parcourt le nombre binaire de la droite vers la gauche en regroupant les chiffres binaires par paquets de 3 (en complétant éventuellement par des zéros). Il suffit ensuite de remplacer chaque paquet de 3 par le chiffre octal.
Pour calculer une différence entre un nombre et un autre plus petit, on écrit une soustraction. On utilise le signe « − » (moins). Sur les 27 élèves de la classe, il y a 15 filles.
Les élèves de CE1 et CE2 pourront découvrir la méthode française traditionnelle (ou méthode par compensation) qui consiste à ajouter un même nombre. La méthode anglo-saxonne (par emprunt, par cassage) consiste à emprunter une dizaine. Généralement, je laisse les élèves choisir la méthode qu'ils préfèrent.
Pour poser une soustraction en colonne, il faut bien aligner les nombres, mettre le signe - à gauche du deuxième terme de l'opération et enfin le trait, qui signifie « égal », sous le deuxième terme. Pour vérifier une soustraction en colonnes, il faut additionner le résultat avec le deuxième terme de la soustraction.
Il suffit de découper le nombre en paquet de 3 ou 4 bits(a partir de la droite) et de remplacer par la valeur correspondante. Les paquets sont de 3 bit pour l'octal et 4bits pour l'hexadécimal. L'hexadécimal et particulièrement pratique car avec 4 lettres un code exactement 4 bits soit un octet.
La méthode la plus simple pour convertir un nombre décimal en binaire est la méthode euclidienne. On divise le décimal par 2, on note le reste de la division 1 ou 0. On réapplique le même procédé avec le quotient précédent, et on met de nouveau le reste de côté. On réitère la division jusqu'à ce que le quotient soit 0.
décimal → octal (hexadécimal) La conversion correspond à des divisions entières successives par 8 (16). Le nombre octal (hexadécimal) est obtenu en prenant les différents restes du dernier vers le premier.
la différence entre deux nombres. Pour poser une soustraction, on écrit en haut le nombre le plus grand, et on aligne les chiffres de droite à gauche en commençant par le rang des unités. On soustrait en commençant par la droite.
D'abord, on soustrait les chiffres de la partie décimale : les millièmes des millièmes, les centièmes des centièmes, les dixièmes des dixièmes. Puis on soustrait la partie entière : les unités des unités, les dizaines des dizaines, les centaines des centaines, les milliers des milliers.
Dans le système binaire, les calculs s'effectuent comme dans le système décimal. Ainsi, l'addition 1100 + 1010 donne 10110. En posant le calcul comme on le fait à l'école et en additionnant de droite à gauche, on a : 0 + 0 = 0.
Par exemple, la représentation binaire du nombre décimal 74 est 1001010, que l'on groupe en (00)1 001 010 ; ainsi, la représentation octale est 1 pour 1, 1 pour le groupe 001, et 2 pour le groupe 010, ce qui donne 112. Le système octal est quelquefois utilisé en calcul à la place de l'hexadécimal.
Le système octal ou base 8 comprend huit chiffres qui sont : 0, 1, 2, 3, 4, 5, 6, 7. Les chiffres 8 et 9 n'existent pas dans cette base (B=8).
Conversion binaire décimale
Le premier rang (en partant de la droite) est le rang 0, le second est le 1, etc. Pour convertir le tout en décimale, on procède de la manière suivante : on multiplie par 20 la valeur du rang 0, par 21 la valeur du rang 1, par 22 la valeur du rang 2, [...], par 210 la valeur du rang 10, etc.
Pour convertir un nombre décimal en nombre binaire (en base B = 2), il suffit de faire des divisions entières successives par 2 jusqu'à ce que le quotient devienne nul.
Pour poser une addition en base 4, on utilise exactement les mêmes règles que d'habitude, il faudra juste faire très attention en additionnant et en ajoutant les retenues. Exemple : le nombre 14 s'écrit 32 en base 4, et le nombre 11 s'écrit 23 en base 4. restante : 1+3+2=12, j'inscrit mon résultat.
on utilise un nombre petit de symboles (les chiffres) dont la valeur dépend de la position. Chaque décalage vers la gauche du symbole le multiplie par une certaine quantité appelée la base. Par exemple, en écriture décimale 2345 signifie 5+4×10+3×100+2× 1000. C'est ce que l'on appelle la numération de position.
Le premier rang (en partant de la droite) est le rang 0, le second est le 1, etc. Pour convertir le tout en décimale, on procède de la manière suivante : on multiplie par 20 la valeur du rang 0, par 21 la valeur du rang 1, par 22 la valeur du rang 2, [...], par 210 la valeur du rang 10, etc.
La base 16 nécessite l'utilisation de 16 chiffres. On utilise alors les 10 chiffres usuels auxquels on rajoute les 6 premières lettres de l'alphabet. Les symboles utilisés sont donc 0, 1, 2, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Pour effectuer une soustraction simple, utilisez l'opérateur arithmétique - (signe moins). Par exemple, si vous entrez la formule =10-5 dans une cellule, la cellule affiche 5 comme résultat.
Soustraire un nombre négatif revient à faire une addition. On a 4 $ et on perd une dette de 6 $. Ça revient à avoir 4 $ et à ajouter 6 $.