Dans un repère du plan, l'abscisse d'un point est l'un des deux nombres qui permet de repérer la position de ce point dans le repère. Elle se lit sur l'axe horizontal. L'autre nombre est l'ordonnée. Abscisse et ordonnée sont les coordonnées d'un point : on cite toujours l'abscisse avant l'ordonnée.
Chaque point peut être associé à un nombre que l'on appelle l'abscisse du point. A(1) signifie que le point A a pour abscisse 1. B(4) signifie que le point B a pour abscisse 4.
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
Coordonnée horizontale permettant de définir la position horizontale d'un point dans un plan ou sur une droite orientée. L'axe des abscisses et l'axe des ordonnées permettent de placer un point sur un repère. Exemple : Abscisse à l'origine, abscisse curviligne.
L'abscisse du point B est égale à −2. L'abscisse du point C est égale à 0.
Lorsque l'équation de la droite est présentée sous la forme y = ax + b, l'ordonnée à l'origine est le b. On peut calculer l'abscisse à l'origine avec la formule x = -b/a.
Quelle est l'ordonnée du point A d'abscisse 3 appartenant à la courbe de la fonction f ? L'ordonnée est f(3) = 4 1 + 32 = 4 10 = 0,4 c.
Lire les coordonnées du point
Le point A est associé à 2 nombres relatifs (2 et -3) qui sont ses coordonnées: Le 1er nombre (2) est l'abscisse: il indique la position sur l'axe horizontal. Le 2e nombre (-3) est l'ordonnée: il indique la position sur l'axe vertical.
Une abscisse, toujours au féminin.
Pour déterminer l'abscisse du point d'intersection avec l'axe des abscisses, il faut trouver la valeur de x pour laquelle y = 0 y=0 y=0 . Pour déterminer l'ordonnée du point d'intersection avec l'axe des ordonnées, il faut trouver la valeur de y pour laquelle x = 0 x=0 x=0 .
Définition : Le nombre associé à un point sur une demi-droite graduée est l'abscisse de ce point. L'origine O de la demi-droite a pour abscisse 0. A est le point d'abscisse 1.
On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Lecture graphique d'images et d'antécédents. Méthode L'axe des abscisses est l'axe horizontal, l'axe des ordonnées est l'axe vertical. On lit les antécédents sur l'axe des abscisses et les images sur l'axe des ordonnées.
Trouver l'abscisse du point
À partir du point dont tu cherches les coordonnées, trace une droite parallèle à l'axe vertical. L'intersection entre cette droite et l'axe horizontal correspond à l'abscisse du point. L'abscisse du point A est 3. Tu peux également trouver l'abscisse du point sans tracer de droite parallèle.
"Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
Repérer une fraction sur une demi-droite graduée
À partir de l'unité de longueur d'une demi-droite graduée, on peut définir une graduation avec des nombres entiers, décimaux ou avec des fractions. Sur une demi-droite graduée, le nombre associé à un point est appelé abscisse de ce point.
On utilisera un repère constitué des trois axes Ox, Oy et Oz, qui délimitent trois plans. Dans ce système de coordonnées cartésien, un point de l'espace sera noté ( x ; y ; z ).
Deuxièmement, l'axe des ordonnées est l'axe vertical, l'axe des y. Ce contenu est protégé par le droit d'auteur.
L'axe des x s'appelle l'abscisse du point, l'axe des y s'appelle l'ordonnée de ce point et l'axe des z s'appelle la côte de ce point.
Si l'on veut placer dans un repère le point M(2 ;-1) On commence par tracer la parallèle à l'axe des ordonnées passant par l'abscisse 2. Puis on trace la parallèle à l'axe des abscisses passant par l'ordonnée -1.
Une droite parallèle à l'axe des abscisse, comme (d3) ou (d4) ci-dessus, possède une équation de la forme y = b où b est un nombre qui mesure la hauteur algébrique (positive ou négative) de la droite par rapport à l'axe des abscisses. On dit parfois qu'une telle droite est horizontale.
Pour déterminer le ou les antécédents d'un nombre b par f , il suffit de résoudre l'équation ( )= f x b . de 4 par f . Pour déterminer le ou les antécédents éventuels de 3 par f , on commence par repérer 3 sur l'axe des ordonnées, puis on trace la droite passant par le point (0 ; 3) parallèle à l'axe des abscisses.
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1.
Ainsi : La pente de la l'équation se calcule avec la formule m=−AB. L'ordonnée à l'origine se calcule avec la formule b=−CB. L'abscisse à l'origine se calcule avec la formule a=−CA.